|
|
@@ -0,0 +1,45 @@
|
|
|
+import os
|
|
|
+import time
|
|
|
+import types
|
|
|
+from pathlib import Path
|
|
|
+
|
|
|
+import numpy as np
|
|
|
+import torch
|
|
|
+
|
|
|
+import modules.shared as shared
|
|
|
+
|
|
|
+np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
|
|
+
|
|
|
+os.environ['RWKV_JIT_ON'] = '1'
|
|
|
+os.environ["RWKV_CUDA_ON"] = '0' # '1' : use CUDA kernel for seq mode (much faster)
|
|
|
+
|
|
|
+from rwkv.model import RWKV
|
|
|
+from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
|
|
+
|
|
|
+
|
|
|
+class RWKVModel:
|
|
|
+ def __init__(self):
|
|
|
+ pass
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def from_pretrained(self, path, dtype="fp16", device="cuda"):
|
|
|
+ tokenizer_path = Path(f"{path.parent}/20B_tokenizer.json")
|
|
|
+
|
|
|
+ model = RWKV(model=path.as_posix(), strategy=f'{device} {dtype}')
|
|
|
+ pipeline = PIPELINE(model, tokenizer_path.as_posix())
|
|
|
+
|
|
|
+ result = self()
|
|
|
+ result.pipeline = pipeline
|
|
|
+ return result
|
|
|
+
|
|
|
+ def generate(self, context, token_count=20, temperature=1, top_p=1, alpha_frequency=0.25, alpha_presence=0.25, token_ban=[0], token_stop=[], callback=None):
|
|
|
+ args = PIPELINE_ARGS(
|
|
|
+ temperature = temperature,
|
|
|
+ top_p = top_p,
|
|
|
+ alpha_frequency = alpha_frequency, # Frequency Penalty (as in GPT-3)
|
|
|
+ alpha_presence = alpha_presence, # Presence Penalty (as in GPT-3)
|
|
|
+ token_ban = token_ban, # ban the generation of some tokens
|
|
|
+ token_stop = token_stop
|
|
|
+ )
|
|
|
+
|
|
|
+ return context+self.pipeline.generate(context, token_count=token_count, args=args, callback=callback)
|