| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- import gc
- import re
- import time
- import numpy as np
- import torch
- import transformers
- from rwkv.utils import PIPELINE, PIPELINE_ARGS
- from tqdm import tqdm
- import modules.shared as shared
- from modules.extensions import apply_extensions
- from modules.html_generator import generate_4chan_html, generate_basic_html
- from modules.models import local_rank
- from modules.stopping_criteria import _SentinelTokenStoppingCriteria
- def get_max_prompt_length(tokens):
- max_length = 2048-tokens
- if shared.soft_prompt:
- max_length -= shared.soft_prompt_tensor.shape[1]
- return max_length
- def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
- if shared.is_RWKV:
- return prompt
- input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
- if shared.args.cpu:
- return input_ids
- elif shared.args.flexgen:
- return input_ids.numpy()
- elif shared.args.deepspeed:
- return input_ids.to(device=local_rank)
- else:
- return input_ids.cuda()
- def decode(output_ids):
- reply = shared.tokenizer.decode(output_ids, skip_special_tokens=True)
- reply = reply.replace(r'<|endoftext|>', '')
- return reply
- def generate_softprompt_input_tensors(input_ids):
- inputs_embeds = shared.model.transformer.wte(input_ids)
- inputs_embeds = torch.cat((shared.soft_prompt_tensor, inputs_embeds), dim=1)
- filler_input_ids = torch.zeros((1, inputs_embeds.shape[1]), dtype=input_ids.dtype).to(shared.model.device)
- #filler_input_ids += shared.model.config.bos_token_id # setting dummy input_ids to bos tokens
- return inputs_embeds, filler_input_ids
- # Removes empty replies from gpt4chan outputs
- def fix_gpt4chan(s):
- for i in range(10):
- s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
- s = re.sub("--- [0-9]*\n *\n---", "---", s)
- s = re.sub("--- [0-9]*\n\n\n---", "---", s)
- return s
- # Fix the LaTeX equations in galactica
- def fix_galactica(s):
- s = s.replace(r'\[', r'$')
- s = s.replace(r'\]', r'$')
- s = s.replace(r'\(', r'$')
- s = s.replace(r'\)', r'$')
- s = s.replace(r'$$', r'$')
- s = re.sub(r'\n', r'\n\n', s)
- s = re.sub(r"\n{3,}", "\n\n", s)
- return s
- def formatted_outputs(reply, model_name):
- if not (shared.args.chat or shared.args.cai_chat):
- if shared.model_name.lower().startswith('galactica'):
- reply = fix_galactica(reply)
- return reply, reply, generate_basic_html(reply)
- elif shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')):
- reply = fix_gpt4chan(reply)
- return reply, 'Only applicable for GALACTICA models.', generate_4chan_html(reply)
- else:
- return reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply)
- else:
- return reply
- def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None):
- gc.collect()
- if not shared.args.cpu:
- torch.cuda.empty_cache()
- if shared.is_RWKV:
- if shared.args.no_stream:
- reply = shared.model.generate(question, token_count=max_new_tokens, temperature=temperature, top_p=top_p)
- yield formatted_outputs(reply, None)
- else:
- for i in range(max_new_tokens//8):
- reply = shared.model.generate(question, token_count=8, temperature=temperature, top_p=top_p)
- yield formatted_outputs(reply, None)
- question = reply
- return formatted_outputs(reply, None)
- original_question = question
- if not (shared.args.chat or shared.args.cai_chat):
- question = apply_extensions(question, "input")
- if shared.args.verbose:
- print(f"\n\n{question}\n--------------------\n")
- input_ids = encode(question, max_new_tokens)
- cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()"
- n = shared.tokenizer.eos_token_id if eos_token is None else encode(eos_token)[0][-1]
- if stopping_string is not None:
- # The stopping_criteria code below was copied from
- # https://github.com/PygmalionAI/gradio-ui/blob/master/src/model.py
- t = encode(stopping_string, 0, add_special_tokens=False)
- stopping_criteria_list = transformers.StoppingCriteriaList([
- _SentinelTokenStoppingCriteria(
- sentinel_token_ids=t,
- starting_idx=len(input_ids[0])
- )
- ])
- else:
- stopping_criteria_list = None
- if not shared.args.flexgen:
- generate_params = [
- f"eos_token_id={n}",
- f"stopping_criteria=stopping_criteria_list",
- f"do_sample={do_sample}",
- f"temperature={temperature}",
- f"top_p={top_p}",
- f"typical_p={typical_p}",
- f"repetition_penalty={repetition_penalty}",
- f"top_k={top_k}",
- f"min_length={min_length if shared.args.no_stream else 0}",
- f"no_repeat_ngram_size={no_repeat_ngram_size}",
- f"num_beams={num_beams}",
- f"penalty_alpha={penalty_alpha}",
- f"length_penalty={length_penalty}",
- f"early_stopping={early_stopping}",
- ]
- else:
- generate_params = [
- f"do_sample={do_sample}",
- f"temperature={temperature}",
- f"stop={n}",
- ]
- if shared.args.deepspeed:
- generate_params.append("synced_gpus=True")
- if shared.args.no_stream:
- generate_params.append("max_new_tokens=max_new_tokens")
- else:
- generate_params.append("max_new_tokens=8")
- if shared.soft_prompt:
- inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
- generate_params.insert(0, "inputs_embeds=inputs_embeds")
- generate_params.insert(0, "filler_input_ids")
- else:
- generate_params.insert(0, "input_ids")
- # Generate the entire reply at once
- if shared.args.no_stream:
- t0 = time.time()
- with torch.no_grad():
- output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
- if shared.soft_prompt:
- output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
- reply = decode(output)
- if not (shared.args.chat or shared.args.cai_chat):
- reply = original_question + apply_extensions(reply[len(question):], "output")
- yield formatted_outputs(reply, shared.model_name)
- t1 = time.time()
- print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0)/8:.2f} it/s, {len(output)-len(input_ids[0])} tokens)")
- # Generate the reply 8 tokens at a time
- else:
- yield formatted_outputs(original_question, shared.model_name)
- for i in tqdm(range(max_new_tokens//8+1)):
- with torch.no_grad():
- output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
- if shared.soft_prompt:
- output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
- reply = decode(output)
- if not (shared.args.chat or shared.args.cai_chat):
- reply = original_question + apply_extensions(reply[len(question):], "output")
- yield formatted_outputs(reply, shared.model_name)
- if not shared.args.flexgen:
- if output[-1] == n:
- break
- input_ids = torch.reshape(output, (1, output.shape[0]))
- else:
- if np.count_nonzero(input_ids[0] == n) < np.count_nonzero(output == n):
- break
- input_ids = np.reshape(output, (1, output.shape[0]))
- if shared.soft_prompt:
- inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
|