|
|
@@ -0,0 +1,40 @@
|
|
|
+'''
|
|
|
+
|
|
|
+Converts a transformers model to safetensors format and shards it.
|
|
|
+
|
|
|
+This makes it faster to load (because of safetensors) and lowers its RAM usage
|
|
|
+while loading (because of sharding).
|
|
|
+
|
|
|
+Based on the original script by 81300:
|
|
|
+
|
|
|
+https://gist.github.com/81300/fe5b08bff1cba45296a829b9d6b0f303
|
|
|
+
|
|
|
+'''
|
|
|
+
|
|
|
+from pathlib import Path
|
|
|
+from sys import argv
|
|
|
+
|
|
|
+import torch
|
|
|
+from transformers import AutoModelForCausalLM
|
|
|
+from transformers import AutoTokenizer
|
|
|
+import argparse
|
|
|
+
|
|
|
+parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog,max_help_position=54))
|
|
|
+parser.add_argument('MODEL', type=str, default=None, nargs='?', help="Path to the input model.")
|
|
|
+parser.add_argument('--output', type=str, default=None, help='Path to the output folder (default: models/{model_name}_safetensors).')
|
|
|
+parser.add_argument("--max-shard-size", type=str, default="2GB", help="Maximum size of a shard in GB or MB (default: %(default)s).")
|
|
|
+parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
|
|
|
+args = parser.parse_args()
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ path = Path(args.MODEL)
|
|
|
+ model_name = path.name
|
|
|
+
|
|
|
+ print(f"Loading {model_name}...")
|
|
|
+ model = AutoModelForCausalLM.from_pretrained(path, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if args.bf16 else torch.float16)
|
|
|
+ tokenizer = AutoTokenizer.from_pretrained(path)
|
|
|
+
|
|
|
+ out_folder = args.output or Path(f"models/{model_name}_safetensors")
|
|
|
+ print(f"Saving the converted model to {out_folder} with a maximum shard size of {args.max_shard_size}...")
|
|
|
+ model.save_pretrained(out_folder, max_shard_size=args.max_shard_size, safe_serialization=True)
|
|
|
+ tokenizer.save_pretrained(out_folder)
|