convert-to-safetensors.py 1.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940
  1. '''
  2. Converts a transformers model to safetensors format and shards it.
  3. This makes it faster to load (because of safetensors) and lowers its RAM usage
  4. while loading (because of sharding).
  5. Based on the original script by 81300:
  6. https://gist.github.com/81300/fe5b08bff1cba45296a829b9d6b0f303
  7. '''
  8. from pathlib import Path
  9. from sys import argv
  10. import torch
  11. from transformers import AutoModelForCausalLM
  12. from transformers import AutoTokenizer
  13. import argparse
  14. parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog,max_help_position=54))
  15. parser.add_argument('MODEL', type=str, default=None, nargs='?', help="Path to the input model.")
  16. parser.add_argument('--output', type=str, default=None, help='Path to the output folder (default: models/{model_name}_safetensors).')
  17. parser.add_argument("--max-shard-size", type=str, default="2GB", help="Maximum size of a shard in GB or MB (default: %(default)s).")
  18. parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
  19. args = parser.parse_args()
  20. if __name__ == '__main__':
  21. path = Path(args.MODEL)
  22. model_name = path.name
  23. print(f"Loading {model_name}...")
  24. model = AutoModelForCausalLM.from_pretrained(path, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if args.bf16 else torch.float16)
  25. tokenizer = AutoTokenizer.from_pretrained(path)
  26. out_folder = args.output or Path(f"models/{model_name}_safetensors")
  27. print(f"Saving the converted model to {out_folder} with a maximum shard size of {args.max_shard_size}...")
  28. model.save_pretrained(out_folder, max_shard_size=args.max_shard_size, safe_serialization=True)
  29. tokenizer.save_pretrained(out_folder)