|
|
@@ -15,20 +15,20 @@ from modules.html_generator import generate_4chan_html, generate_basic_html
|
|
|
from modules.models import clear_torch_cache, local_rank
|
|
|
|
|
|
|
|
|
-def get_max_prompt_length(tokens):
|
|
|
- max_length = 2048 - tokens
|
|
|
+def get_max_prompt_length(state):
|
|
|
+ max_length = state['truncation_length'] - state['max_new_tokens']
|
|
|
if shared.soft_prompt:
|
|
|
max_length -= shared.soft_prompt_tensor.shape[1]
|
|
|
return max_length
|
|
|
|
|
|
|
|
|
-def encode(prompt, tokens_to_generate=0, add_special_tokens=True, add_bos_token=True):
|
|
|
+def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_length=None):
|
|
|
if any((shared.is_RWKV, shared.is_llamacpp)):
|
|
|
input_ids = shared.tokenizer.encode(str(prompt))
|
|
|
input_ids = np.array(input_ids).reshape(1, len(input_ids))
|
|
|
return input_ids
|
|
|
else:
|
|
|
- input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
|
|
|
+ input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', add_special_tokens=add_special_tokens)
|
|
|
|
|
|
# This is a hack for making replies more creative.
|
|
|
if not add_bos_token and input_ids[0][0] == shared.tokenizer.bos_token_id:
|
|
|
@@ -39,17 +39,21 @@ def encode(prompt, tokens_to_generate=0, add_special_tokens=True, add_bos_token=
|
|
|
if type(shared.tokenizer) is transformers.LlamaTokenizer and input_ids[0][0] == 29871:
|
|
|
input_ids = input_ids[:, 1:]
|
|
|
|
|
|
- if shared.args.cpu:
|
|
|
- return input_ids
|
|
|
- elif shared.args.flexgen:
|
|
|
- return input_ids.numpy()
|
|
|
- elif shared.args.deepspeed:
|
|
|
- return input_ids.to(device=local_rank)
|
|
|
- elif torch.has_mps:
|
|
|
- device = torch.device('mps')
|
|
|
- return input_ids.to(device)
|
|
|
- else:
|
|
|
- return input_ids.cuda()
|
|
|
+ # Handling truncation
|
|
|
+ if truncation_length is not None:
|
|
|
+ input_ids = input_ids[:, -truncation_length:]
|
|
|
+
|
|
|
+ if any((shared.is_RWKV, shared.is_llamacpp, shared.args.cpu)):
|
|
|
+ return input_ids
|
|
|
+ elif shared.args.flexgen:
|
|
|
+ return input_ids.numpy()
|
|
|
+ elif shared.args.deepspeed:
|
|
|
+ return input_ids.to(device=local_rank)
|
|
|
+ elif torch.has_mps:
|
|
|
+ device = torch.device('mps')
|
|
|
+ return input_ids.to(device)
|
|
|
+ else:
|
|
|
+ return input_ids.cuda()
|
|
|
|
|
|
|
|
|
def decode(output_ids):
|
|
|
@@ -129,12 +133,14 @@ def generate_reply(question, state, eos_token=None, stopping_strings=[]):
|
|
|
original_question = question
|
|
|
if not shared.is_chat():
|
|
|
question = apply_extensions(question, 'input')
|
|
|
- if shared.args.verbose:
|
|
|
- print(f'\n\n{question}\n--------------------\n')
|
|
|
|
|
|
# These models are not part of Hugging Face, so we handle them
|
|
|
# separately and terminate the function call earlier
|
|
|
if any((shared.is_RWKV, shared.is_llamacpp)):
|
|
|
+
|
|
|
+ if shared.args.verbose:
|
|
|
+ print(f'\n\n{question}\n--------------------\n')
|
|
|
+
|
|
|
for k in ['temperature', 'top_p', 'top_k', 'repetition_penalty']:
|
|
|
generate_params[k] = state[k]
|
|
|
generate_params['token_count'] = state['max_new_tokens']
|
|
|
@@ -166,10 +172,13 @@ def generate_reply(question, state, eos_token=None, stopping_strings=[]):
|
|
|
print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})')
|
|
|
return
|
|
|
|
|
|
- input_ids = encode(question, state['max_new_tokens'], add_bos_token=state['add_bos_token'])
|
|
|
+ input_ids = encode(question, add_bos_token=state['add_bos_token'], truncation_length=get_max_prompt_length(state))
|
|
|
original_input_ids = input_ids
|
|
|
output = input_ids[0]
|
|
|
|
|
|
+ if shared.args.verbose:
|
|
|
+ print(f'\n\n{decode(input_ids[0])}\n--------------------\n')
|
|
|
+
|
|
|
cuda = not any((shared.args.cpu, shared.args.deepspeed, shared.args.flexgen))
|
|
|
eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else []
|
|
|
if eos_token is not None:
|
|
|
@@ -179,7 +188,7 @@ def generate_reply(question, state, eos_token=None, stopping_strings=[]):
|
|
|
stopping_criteria_list = transformers.StoppingCriteriaList()
|
|
|
for st in [stopping_strings, state['custom_stopping_strings']]:
|
|
|
if type(st) is list and len(st) > 0:
|
|
|
- sentinel_token_ids = [encode(string, 0, add_special_tokens=False) for string in st]
|
|
|
+ sentinel_token_ids = [encode(string, add_special_tokens=False) for string in st]
|
|
|
stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=sentinel_token_ids, starting_idx=len(input_ids[0])))
|
|
|
break
|
|
|
|
|
|
@@ -188,6 +197,8 @@ def generate_reply(question, state, eos_token=None, stopping_strings=[]):
|
|
|
generate_params[k] = state[k]
|
|
|
generate_params['eos_token_id'] = eos_token_ids
|
|
|
generate_params['stopping_criteria'] = stopping_criteria_list
|
|
|
+ if state['ban_eos_token']:
|
|
|
+ generate_params['suppress_tokens'] = [shared.tokenizer.eos_token_id]
|
|
|
else:
|
|
|
for k in ['max_new_tokens', 'do_sample', 'temperature']:
|
|
|
generate_params[k] = state[k]
|