| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- import gc
- import json
- import os
- import re
- import time
- import zipfile
- from pathlib import Path
- import numpy as np
- import torch
- import transformers
- from accelerate import infer_auto_device_map, init_empty_weights
- from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
- BitsAndBytesConfig, LlamaTokenizer)
- import modules.shared as shared
- from modules import llama_attn_hijack
- transformers.logging.set_verbosity_error()
- if shared.args.flexgen:
- from flexgen.flex_opt import CompressionConfig, ExecutionEnv, OptLM, Policy
- local_rank = None
- if shared.args.deepspeed:
- import deepspeed
- from transformers.deepspeed import (HfDeepSpeedConfig,
- is_deepspeed_zero3_enabled)
- from modules.deepspeed_parameters import generate_ds_config
- # Distributed setup
- local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
- world_size = int(os.getenv("WORLD_SIZE", "1"))
- torch.cuda.set_device(local_rank)
- deepspeed.init_distributed()
- ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
- dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
- def load_model(model_name):
- print(f"Loading {model_name}...")
- t0 = time.time()
- shared.is_RWKV = 'rwkv-' in model_name.lower()
- shared.is_llamacpp = len(list(Path(f'{shared.args.model_dir}/{model_name}').glob('ggml*.bin'))) > 0
- # Default settings
- if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.wbits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV, shared.is_llamacpp]):
- if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
- model = AutoModelForCausalLM.from_pretrained(Path(f"{shared.args.model_dir}/{shared.model_name}"), device_map='auto', load_in_8bit=True)
- else:
- model = AutoModelForCausalLM.from_pretrained(Path(f"{shared.args.model_dir}/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
- if torch.has_mps:
- device = torch.device('mps')
- model = model.to(device)
- else:
- model = model.cuda()
- # FlexGen
- elif shared.args.flexgen:
- # Initialize environment
- env = ExecutionEnv.create(shared.args.disk_cache_dir)
- # Offloading policy
- policy = Policy(1, 1,
- shared.args.percent[0], shared.args.percent[1],
- shared.args.percent[2], shared.args.percent[3],
- shared.args.percent[4], shared.args.percent[5],
- overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight,
- cpu_cache_compute=False, attn_sparsity=1.0,
- compress_weight=shared.args.compress_weight,
- comp_weight_config=CompressionConfig(
- num_bits=4, group_size=64,
- group_dim=0, symmetric=False),
- compress_cache=False,
- comp_cache_config=CompressionConfig(
- num_bits=4, group_size=64,
- group_dim=2, symmetric=False))
- model = OptLM(f"facebook/{shared.model_name}", env, shared.args.model_dir, policy)
- # DeepSpeed ZeRO-3
- elif shared.args.deepspeed:
- model = AutoModelForCausalLM.from_pretrained(Path(f"{shared.args.model_dir}/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
- model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
- model.module.eval() # Inference
- print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
- # RMKV model (not on HuggingFace)
- elif shared.is_RWKV:
- from modules.RWKV import RWKVModel, RWKVTokenizer
- model = RWKVModel.from_pretrained(Path(f'{shared.args.model_dir}/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
- tokenizer = RWKVTokenizer.from_pretrained(Path(shared.args.model_dir))
- return model, tokenizer
- # Quantized model
- elif shared.args.wbits > 0:
- from modules.GPTQ_loader import load_quantized
- model = load_quantized(model_name)
- # llamacpp model
- elif shared.is_llamacpp:
- from modules.llamacpp_model_alternative import LlamaCppModel
- model_file = list(Path(f'{shared.args.model_dir}/{model_name}').glob('ggml*.bin'))[0]
- print(f"llama.cpp weights detected: {model_file}\n")
- model, tokenizer = LlamaCppModel.from_pretrained(model_file)
- return model, tokenizer
- # Custom
- else:
- params = {"low_cpu_mem_usage": True}
- if not any((shared.args.cpu, torch.cuda.is_available(), torch.has_mps)):
- print("Warning: torch.cuda.is_available() returned False.\nThis means that no GPU has been detected.\nFalling back to CPU mode.\n")
- shared.args.cpu = True
- if shared.args.cpu:
- params["torch_dtype"] = torch.float32
- else:
- params["device_map"] = 'auto'
- if shared.args.load_in_8bit and any((shared.args.auto_devices, shared.args.gpu_memory)):
- params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True)
- elif shared.args.load_in_8bit:
- params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True)
- elif shared.args.bf16:
- params["torch_dtype"] = torch.bfloat16
- else:
- params["torch_dtype"] = torch.float16
- if shared.args.gpu_memory:
- memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory))
- max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB'
- max_memory = {}
- for i in range(len(memory_map)):
- max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i]
- max_memory['cpu'] = max_cpu_memory
- params['max_memory'] = max_memory
- elif shared.args.auto_devices:
- total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024 * 1024))
- suggestion = round((total_mem - 1000) / 1000) * 1000
- if total_mem - suggestion < 800:
- suggestion -= 1000
- suggestion = int(round(suggestion / 1000))
- print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
- max_memory = {0: f'{suggestion}GiB', 'cpu': f'{shared.args.cpu_memory or 99}GiB'}
- params['max_memory'] = max_memory
- if shared.args.disk:
- params["offload_folder"] = shared.args.disk_cache_dir
- checkpoint = Path(f'{shared.args.model_dir}/{shared.model_name}')
- if shared.args.load_in_8bit and params.get('max_memory', None) is not None and params['device_map'] == 'auto':
- config = AutoConfig.from_pretrained(checkpoint)
- with init_empty_weights():
- model = AutoModelForCausalLM.from_config(config)
- model.tie_weights()
- params['device_map'] = infer_auto_device_map(
- model,
- dtype=torch.int8,
- max_memory=params['max_memory'],
- no_split_module_classes=model._no_split_modules
- )
- model = AutoModelForCausalLM.from_pretrained(checkpoint, **params)
- # Hijack attention with xformers
- if any((shared.args.xformers, shared.args.sdp_attention)):
- llama_attn_hijack.hijack_llama_attention()
- # Loading the tokenizer
- if any((k in shared.model_name.lower() for k in ['gpt4chan', 'gpt-4chan'])) and Path(f"{shared.args.model_dir}/gpt-j-6B/").exists():
- tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/gpt-j-6B/"))
- elif type(model) is transformers.LlamaForCausalLM:
- tokenizer = LlamaTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/{shared.model_name}/"), clean_up_tokenization_spaces=True)
- # Leaving this here until the LLaMA tokenizer gets figured out.
- # For some people this fixes things, for others it causes an error.
- try:
- tokenizer.eos_token_id = 2
- tokenizer.bos_token_id = 1
- tokenizer.pad_token_id = 0
- except:
- pass
- else:
- tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/{shared.model_name}/"))
- print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
- return model, tokenizer
- def clear_torch_cache():
- gc.collect()
- if not shared.args.cpu:
- torch.cuda.empty_cache()
- def unload_model():
- shared.model = shared.tokenizer = None
- clear_torch_cache()
- def reload_model():
- unload_model()
- shared.model, shared.tokenizer = load_model(shared.model_name)
- def load_soft_prompt(name):
- if name == 'None':
- shared.soft_prompt = False
- shared.soft_prompt_tensor = None
- else:
- with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
- zf.extract('tensor.npy')
- zf.extract('meta.json')
- j = json.loads(open('meta.json', 'r').read())
- print(f"\nLoading the softprompt \"{name}\".")
- for field in j:
- if field != 'name':
- if type(j[field]) is list:
- print(f"{field}: {', '.join(j[field])}")
- else:
- print(f"{field}: {j[field]}")
- print()
- tensor = np.load('tensor.npy')
- Path('tensor.npy').unlink()
- Path('meta.json').unlink()
- tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
- tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
- shared.soft_prompt = True
- shared.soft_prompt_tensor = tensor
- return name
|