|
@@ -1,125 +0,0 @@
|
|
|
-# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
|
|
|
-# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
|
|
|
|
-
|
|
|
|
|
-from typing import Tuple
|
|
|
|
|
-import os
|
|
|
|
|
-import sys
|
|
|
|
|
-import torch
|
|
|
|
|
-import fire
|
|
|
|
|
-import time
|
|
|
|
|
-import json
|
|
|
|
|
-
|
|
|
|
|
-from pathlib import Path
|
|
|
|
|
-
|
|
|
|
|
-from fairscale.nn.model_parallel.initialize import initialize_model_parallel
|
|
|
|
|
-
|
|
|
|
|
-from repositories.llama_int8.llama import ModelArgs, Transformer, Tokenizer, LLaMA
|
|
|
|
|
-
|
|
|
|
|
-
|
|
|
|
|
-def setup_model_parallel() -> Tuple[int, int]:
|
|
|
|
|
- local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
|
|
|
|
- world_size = int(os.environ.get("WORLD_SIZE", -1))
|
|
|
|
|
-
|
|
|
|
|
- torch.distributed.init_process_group("nccl")
|
|
|
|
|
- initialize_model_parallel(world_size)
|
|
|
|
|
- torch.cuda.set_device(local_rank)
|
|
|
|
|
-
|
|
|
|
|
- # seed must be the same in all processes
|
|
|
|
|
- torch.manual_seed(1)
|
|
|
|
|
- return local_rank, world_size
|
|
|
|
|
-
|
|
|
|
|
-
|
|
|
|
|
-def load(
|
|
|
|
|
- ckpt_dir: str,
|
|
|
|
|
- tokenizer_path: str,
|
|
|
|
|
- max_seq_len: int,
|
|
|
|
|
- max_batch_size: int,
|
|
|
|
|
-) -> LLaMA:
|
|
|
|
|
- start_time = time.time()
|
|
|
|
|
- checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
|
|
|
|
-
|
|
|
|
|
- with open(Path(ckpt_dir) / "params.json", "r") as f:
|
|
|
|
|
- params = json.loads(f.read())
|
|
|
|
|
-
|
|
|
|
|
- model_args: ModelArgs = ModelArgs(
|
|
|
|
|
- max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
|
|
|
|
|
- )
|
|
|
|
|
- tokenizer = Tokenizer(model_path=tokenizer_path)
|
|
|
|
|
- model_args.vocab_size = tokenizer.n_words
|
|
|
|
|
- # torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
|
|
|
|
- torch.set_default_tensor_type(torch.HalfTensor)
|
|
|
|
|
- print("Creating transformer")
|
|
|
|
|
- model = Transformer(model_args)
|
|
|
|
|
- print("Transformer created")
|
|
|
|
|
-
|
|
|
|
|
- key_to_dim = {
|
|
|
|
|
- "w1": 0,
|
|
|
|
|
- "w2": -1,
|
|
|
|
|
- "w3": 0,
|
|
|
|
|
- "wo": -1,
|
|
|
|
|
- "wq": 0,
|
|
|
|
|
- "wk": 0,
|
|
|
|
|
- "wv": 0,
|
|
|
|
|
- "output": 0,
|
|
|
|
|
- "tok_embeddings": -1,
|
|
|
|
|
- "ffn_norm": None,
|
|
|
|
|
- "attention_norm": None,
|
|
|
|
|
- "norm": None,
|
|
|
|
|
- "rope": None,
|
|
|
|
|
- }
|
|
|
|
|
-
|
|
|
|
|
- # ?
|
|
|
|
|
- torch.set_default_tensor_type(torch.FloatTensor)
|
|
|
|
|
-
|
|
|
|
|
- # load the state dict incrementally, to avoid memory problems
|
|
|
|
|
- for i, ckpt in enumerate(checkpoints):
|
|
|
|
|
- print(f"Loading checkpoint {i}")
|
|
|
|
|
- checkpoint = torch.load(ckpt, map_location="cpu")
|
|
|
|
|
- for parameter_name, parameter in model.named_parameters():
|
|
|
|
|
- short_name = parameter_name.split(".")[-2]
|
|
|
|
|
- if key_to_dim[short_name] is None and i == 0:
|
|
|
|
|
- parameter.data = checkpoint[parameter_name]
|
|
|
|
|
- elif key_to_dim[short_name] == 0:
|
|
|
|
|
- size = checkpoint[parameter_name].size(0)
|
|
|
|
|
- parameter.data[size * i : size * (i + 1), :] = checkpoint[
|
|
|
|
|
- parameter_name
|
|
|
|
|
- ]
|
|
|
|
|
- elif key_to_dim[short_name] == -1:
|
|
|
|
|
- size = checkpoint[parameter_name].size(-1)
|
|
|
|
|
- parameter.data[:, size * i : size * (i + 1)] = checkpoint[
|
|
|
|
|
- parameter_name
|
|
|
|
|
- ]
|
|
|
|
|
- del checkpoint
|
|
|
|
|
-
|
|
|
|
|
- # model.load_state_dict(checkpoint, strict=False)
|
|
|
|
|
- model.quantize()
|
|
|
|
|
-
|
|
|
|
|
- generator = LLaMA(model, tokenizer)
|
|
|
|
|
- print(f"Loaded in {time.time() - start_time:.2f} seconds")
|
|
|
|
|
- return generator
|
|
|
|
|
-
|
|
|
|
|
-
|
|
|
|
|
-class LLaMAModel_8bit:
|
|
|
|
|
- def __init__(self):
|
|
|
|
|
- pass
|
|
|
|
|
-
|
|
|
|
|
- @classmethod
|
|
|
|
|
- def from_pretrained(self, path, max_seq_len=2048, max_batch_size=1):
|
|
|
|
|
- tokenizer_path = path / "tokenizer.model"
|
|
|
|
|
- path = os.path.abspath(path)
|
|
|
|
|
- tokenizer_path = os.path.abspath(tokenizer_path)
|
|
|
|
|
-
|
|
|
|
|
- generator = load(path, tokenizer_path, max_seq_len, max_batch_size)
|
|
|
|
|
-
|
|
|
|
|
- result = self()
|
|
|
|
|
- result.pipeline = generator
|
|
|
|
|
- return result
|
|
|
|
|
-
|
|
|
|
|
- def generate(self, prompt, token_count=512, temperature=0.8, top_p=0.95):
|
|
|
|
|
-
|
|
|
|
|
- results = self.pipeline.generate(
|
|
|
|
|
- [prompt], max_gen_len=token_count, temperature=temperature, top_p=top_p
|
|
|
|
|
- )
|
|
|
|
|
-
|
|
|
|
|
- return results[0]
|
|
|
|
|
-
|
|
|