Explorar o código

Move towards HF LLaMA implementation

oobabooga %!s(int64=2) %!d(string=hai) anos
pai
achega
c33715ad5b
Modificáronse 6 ficheiros con 4 adicións e 245 borrados
  1. 0 96
      modules/LLaMA.py
  2. 0 125
      modules/LLaMA_8bit.py
  3. 1 19
      modules/models.py
  4. 0 2
      modules/shared.py
  5. 2 2
      modules/text_generation.py
  6. 1 1
      requirements.txt

+ 0 - 96
modules/LLaMA.py

@@ -1,96 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# This software may be used and distributed according to the terms of the GNU General Public License version 3.
-
-import json
-import os
-import sys
-import time
-from pathlib import Path
-from typing import Tuple
-
-import fire
-import torch
-from fairscale.nn.model_parallel.initialize import initialize_model_parallel
-from llama import LLaMA, ModelArgs, Tokenizer, Transformer
-
-os.environ['RANK'] = '0'
-os.environ['WORLD_SIZE'] = '1'
-os.environ['MP'] = '1'
-os.environ['MASTER_ADDR'] = '127.0.0.1'
-os.environ['MASTER_PORT'] = '2223'
-
-def setup_model_parallel() -> Tuple[int, int]:
-    local_rank = int(os.environ.get("LOCAL_RANK", -1))
-    world_size = int(os.environ.get("WORLD_SIZE", -1))
-
-    torch.distributed.init_process_group("gloo")
-    initialize_model_parallel(world_size)
-    torch.cuda.set_device(local_rank)
-
-    # seed must be the same in all processes
-    torch.manual_seed(1)
-    return local_rank, world_size
-
-def load(
-    ckpt_dir: str,
-    tokenizer_path: str,
-    local_rank: int,
-    world_size: int,
-    max_seq_len: int,
-    max_batch_size: int,
-) -> LLaMA:
-    start_time = time.time()
-    checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
-    assert world_size == len(
-        checkpoints
-    ), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {world_size}"
-    ckpt_path = checkpoints[local_rank]
-    print("Loading")
-    checkpoint = torch.load(ckpt_path, map_location="cpu")
-    with open(Path(ckpt_dir) / "params.json", "r") as f:
-        params = json.loads(f.read())
-
-    model_args: ModelArgs = ModelArgs(
-        max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
-    )
-    tokenizer = Tokenizer(model_path=tokenizer_path)
-    model_args.vocab_size = tokenizer.n_words
-    torch.set_default_tensor_type(torch.cuda.HalfTensor)
-    model = Transformer(model_args)
-    torch.set_default_tensor_type(torch.FloatTensor)
-    model.load_state_dict(checkpoint, strict=False)
-
-    generator = LLaMA(model, tokenizer)
-    print(f"Loaded in {time.time() - start_time:.2f} seconds")
-    return generator
-
-
-class LLaMAModel:
-    def __init__(self):
-        pass
-
-    @classmethod
-    def from_pretrained(self, path, max_seq_len=2048, max_batch_size=1):
-        tokenizer_path = path / "tokenizer.model"
-        path = os.path.abspath(path)
-        tokenizer_path = os.path.abspath(tokenizer_path)
-        
-        local_rank, world_size = setup_model_parallel()
-        if local_rank > 0:
-            sys.stdout = open(os.devnull, "w")
-
-        generator = load(
-            path, tokenizer_path, local_rank, world_size, max_seq_len, max_batch_size
-        )
-
-        result = self()
-        result.pipeline = generator
-        return result
-
-    def generate(self, prompt, token_count=512, temperature=0.8, top_p=0.95):
-
-        results = self.pipeline.generate(
-            [prompt], max_gen_len=token_count, temperature=temperature, top_p=top_p
-        )
-
-        return results[0]

+ 0 - 125
modules/LLaMA_8bit.py

@@ -1,125 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# This software may be used and distributed according to the terms of the GNU General Public License version 3.
-
-from typing import Tuple
-import os
-import sys
-import torch
-import fire
-import time
-import json
-
-from pathlib import Path
-
-from fairscale.nn.model_parallel.initialize import initialize_model_parallel
-
-from repositories.llama_int8.llama import ModelArgs, Transformer, Tokenizer, LLaMA
-
-
-def setup_model_parallel() -> Tuple[int, int]:
-    local_rank = int(os.environ.get("LOCAL_RANK", -1))
-    world_size = int(os.environ.get("WORLD_SIZE", -1))
-
-    torch.distributed.init_process_group("nccl")
-    initialize_model_parallel(world_size)
-    torch.cuda.set_device(local_rank)
-
-    # seed must be the same in all processes
-    torch.manual_seed(1)
-    return local_rank, world_size
-
-
-def load(
-    ckpt_dir: str,
-    tokenizer_path: str,
-    max_seq_len: int,
-    max_batch_size: int,
-) -> LLaMA:
-    start_time = time.time()
-    checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
-
-    with open(Path(ckpt_dir) / "params.json", "r") as f:
-        params = json.loads(f.read())
-
-    model_args: ModelArgs = ModelArgs(
-        max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
-    )
-    tokenizer = Tokenizer(model_path=tokenizer_path)
-    model_args.vocab_size = tokenizer.n_words
-    # torch.set_default_tensor_type(torch.cuda.HalfTensor)
-    torch.set_default_tensor_type(torch.HalfTensor)
-    print("Creating transformer")
-    model = Transformer(model_args)
-    print("Transformer created")
-
-    key_to_dim = {
-        "w1": 0,
-        "w2": -1,
-        "w3": 0,
-        "wo": -1,
-        "wq": 0,
-        "wk": 0,
-        "wv": 0,
-        "output": 0,
-        "tok_embeddings": -1,
-        "ffn_norm": None,
-        "attention_norm": None,
-        "norm": None,
-        "rope": None,
-    }
-
-    # ?
-    torch.set_default_tensor_type(torch.FloatTensor)
-
-    # load the state dict incrementally, to avoid memory problems
-    for i, ckpt in enumerate(checkpoints):
-        print(f"Loading checkpoint {i}")
-        checkpoint = torch.load(ckpt, map_location="cpu")
-        for parameter_name, parameter in model.named_parameters():
-            short_name = parameter_name.split(".")[-2]
-            if key_to_dim[short_name] is None and i == 0:
-                parameter.data = checkpoint[parameter_name]
-            elif key_to_dim[short_name] == 0:
-                size = checkpoint[parameter_name].size(0)
-                parameter.data[size * i : size * (i + 1), :] = checkpoint[
-                    parameter_name
-                ]
-            elif key_to_dim[short_name] == -1:
-                size = checkpoint[parameter_name].size(-1)
-                parameter.data[:, size * i : size * (i + 1)] = checkpoint[
-                    parameter_name
-                ]
-        del checkpoint
-
-    # model.load_state_dict(checkpoint, strict=False)
-    model.quantize()
-
-    generator = LLaMA(model, tokenizer)
-    print(f"Loaded in {time.time() - start_time:.2f} seconds")
-    return generator
-
-
-class LLaMAModel_8bit:
-    def __init__(self):
-        pass
-
-    @classmethod
-    def from_pretrained(self, path, max_seq_len=2048, max_batch_size=1):
-        tokenizer_path = path / "tokenizer.model"
-        path = os.path.abspath(path)
-        tokenizer_path = os.path.abspath(tokenizer_path)
-        
-        generator = load(path, tokenizer_path, max_seq_len, max_batch_size)
-
-        result = self()
-        result.pipeline = generator
-        return result
-
-    def generate(self, prompt, token_count=512, temperature=0.8, top_p=0.95):
-
-        results = self.pipeline.generate(
-            [prompt], max_gen_len=token_count, temperature=temperature, top_p=top_p
-        )
-
-        return results[0]
-

+ 1 - 19
modules/models.py

@@ -39,10 +39,9 @@ def load_model(model_name):
     t0 = time.time()
 
     shared.is_RWKV = model_name.lower().startswith('rwkv-')
-    shared.is_LLaMA = model_name.lower().startswith('llama-')
 
     # Default settings
-    if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen or shared.is_RWKV or shared.is_LLaMA):
+    if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen or shared.is_RWKV):
         if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
             model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
         else:
@@ -86,23 +85,6 @@ def load_model(model_name):
 
         return model, None
 
-    # LLaMA model (not on HuggingFace)
-    elif shared.is_LLaMA:
-        if shared.args.load_in_8bit:
-            import modules.LLaMA_8bit
-            from modules.LLaMA_8bit import LLaMAModel_8bit
-
-            model = LLaMAModel_8bit.from_pretrained(Path(f'models/{model_name}'))
-
-            return model, None
-        else:
-            import modules.LLaMA
-            from modules.LLaMA import LLaMAModel
-
-            model = LLaMAModel.from_pretrained(Path(f'models/{model_name}'))
-
-            return model, None
-
     # Custom
     else:
         command = "AutoModelForCausalLM.from_pretrained"

+ 0 - 2
modules/shared.py

@@ -6,7 +6,6 @@ model_name = ""
 soft_prompt_tensor = None
 soft_prompt = False
 is_RWKV = False
-is_LLaMA = False
 
 # Chat variables
 history = {'internal': [], 'visible': []}
@@ -43,7 +42,6 @@ settings = {
         'default': 'NovelAI-Sphinx Moth',
         'pygmalion-*': 'Pygmalion',
         'RWKV-*': 'Naive',
-        'llama-*': 'Naive',
         '(rosey|chip|joi)_.*_instruct.*': 'Instruct Joi (Contrastive Search)'
     },
     'prompts': {

+ 2 - 2
modules/text_generation.py

@@ -24,7 +24,7 @@ def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
 
     # These models do not have explicit tokenizers for now, so
     # we return an estimate for the number of tokens
-    if shared.is_RWKV or shared.is_LLaMA:
+    if shared.is_RWKV:
         return np.zeros((1, len(prompt)//4))
 
     input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
@@ -90,7 +90,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
 
     # These models are not part of Hugging Face, so we handle them
     # separately and terminate the function call earlier
-    if shared.is_RWKV or shared.is_LLaMA:
+    if shared.is_RWKV:
         if shared.args.no_stream:
             reply = shared.model.generate(question, token_count=max_new_tokens, temperature=temperature, top_p=top_p)
             t1 = time.time()

+ 1 - 1
requirements.txt

@@ -5,4 +5,4 @@ gradio==3.18.0
 numpy
 rwkv==0.0.6
 safetensors==0.2.8
-git+https://github.com/huggingface/transformers
+git+https://github.com/oobabooga/transformers@llama_push