|
@@ -0,0 +1,139 @@
|
|
|
|
|
+import sys, torch, json
|
|
|
|
|
+from pathlib import Path
|
|
|
|
|
+import gradio as gr
|
|
|
|
|
+from datasets import load_dataset
|
|
|
|
|
+import transformers
|
|
|
|
|
+from modules import ui, shared
|
|
|
|
|
+from peft import prepare_model_for_int8_training, LoraConfig, get_peft_model, get_peft_model_state_dict
|
|
|
|
|
+
|
|
|
|
|
+def get_json_dataset(path: str):
|
|
|
|
|
+ def get_set():
|
|
|
|
|
+ return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path(path).glob('*.json'))), key=str.lower)
|
|
|
|
|
+ return get_set
|
|
|
|
|
+
|
|
|
|
|
+def create_train_interface():
|
|
|
|
|
+ with gr.Tab('Train LoRA', elem_id='lora-train-tab'):
|
|
|
|
|
+ loraName = gr.Textbox(label="Name", info="The name of your new LoRA file")
|
|
|
|
|
+ # TODO: Add explanations of batch sizes and recommendations. Note that batch/microBatch determines gradient accumulation and explain what that means. Note the effects on VRAM usage from changing these values.
|
|
|
|
|
+ microBatchSize = gr.Slider(label='Micro Batch Size', value=4, minimum=1, maximum=128, step=1, info='(TODO)')
|
|
|
|
|
+ batchSize = gr.Slider(label='Batch Size', value=128, minimum=1, maximum=1024, step=4, info='(TODO)')
|
|
|
|
|
+ epochs = gr.Slider(label='Epochs', value=1, minimum=1, maximum=1000, info='Number of times every entry in the dataset should be fed into training. So 1 means feed each item in once, 5 means feed it in five times, etc.')
|
|
|
|
|
+ learningRate = gr.Textbox(label='Learning Rate', value='3e-4', info='Learning rate, in scientific notation. 3e-4 is a good starting base point. 1e-2 is extremely high, 1e-6 is extremely low.')
|
|
|
|
|
+ # TODO: What is the actual maximum rank? Likely distinct per model. This might be better to somehow be on a log scale.
|
|
|
|
|
+ loraRank = gr.Slider(label='LoRA Rank', value=8, minimum=1, maximum=1024, step=4, info='LoRA Rank, or dimension count. Higher values produce a larger file with better control over the model\'s content. Smaller values produce a smaller file with less overall control. Small values like 4 or 8 are great for stylistic guidance, high values like 128 or 256 are good for teaching content upgrades. Higher ranks also require higher VRAM.')
|
|
|
|
|
+ loraAlpha = gr.Slider(label='LoRA Alpha', value=16, minimum=1, maximum=2048, step=4, info='LoRA Alpha. This divided by the rank becomes the scaling of the LoRA. Higher means stronger. A good standard value is twice your Rank.')
|
|
|
|
|
+ # TODO: Better explain what this does.
|
|
|
|
|
+ loraDropout = gr.Slider(label='LoRA Dropout', minimum=0.0, maximum=1.0, step=0.025, value=0.05, info='Percentage probability for dropout of LoRA layers.')
|
|
|
|
|
+ cutoffLen = gr.Slider(label='Cutoff Length', minimum=1,maximum=2048, value=256, step=32, info='Cutoff length for text input. Essentially, how long of a line of text to feed in at a time. Higher values require drastically more VRAM.')
|
|
|
|
|
+ with gr.Row():
|
|
|
|
|
+ datasetFunction = get_json_dataset('training/datasets')
|
|
|
|
|
+ dataset = gr.Dropdown(choices=datasetFunction(), value='None', label='Dataset')
|
|
|
|
|
+ ui.create_refresh_button(dataset, lambda : None, lambda : {'choices': datasetFunction()}, 'refresh-button')
|
|
|
|
|
+ with gr.Row():
|
|
|
|
|
+ evalDataset = gr.Dropdown(choices=datasetFunction(), value='None', label='Evaluation Dataset')
|
|
|
|
|
+ ui.create_refresh_button(evalDataset, lambda : None, lambda : {'choices': datasetFunction()}, 'refresh-button')
|
|
|
|
|
+ with gr.Row():
|
|
|
|
|
+ formatsFunction = get_json_dataset('training/formats')
|
|
|
|
|
+ format = gr.Dropdown(choices=formatsFunction(), value='None', label='Data Format')
|
|
|
|
|
+ ui.create_refresh_button(format, lambda : None, lambda : {'choices': formatsFunction()}, 'refresh-button')
|
|
|
|
|
+ startButton = gr.Button("Start LoRA Training")
|
|
|
|
|
+ output = gr.Markdown(value="(...)")
|
|
|
|
|
+ startButton.click(do_train, [loraName, microBatchSize, batchSize, epochs, learningRate, loraRank, loraAlpha, loraDropout, cutoffLen, dataset, evalDataset, format], [output])
|
|
|
|
|
+
|
|
|
|
|
+def cleanPath(basePath: str, path: str):
|
|
|
|
|
+ """"Strips unusual symbols and forcibly builds a path as relative to the intended directory."""
|
|
|
|
|
+ # TODO: Probably could do with a security audit to guarantee there's no ways this can be bypassed to target an unwanted path.
|
|
|
|
|
+ # Or swap it to a strict whitelist of [a-zA-Z_0-9]
|
|
|
|
|
+ path = path.replace('\\', '/').replace('..', '_')
|
|
|
|
|
+ if basePath is None:
|
|
|
|
|
+ return path
|
|
|
|
|
+ return f'{Path(basePath).absolute()}/{path}'
|
|
|
|
|
+
|
|
|
|
|
+def do_train(loraName: str, microBatchSize: int, batchSize: int, epochs: int, learningRate: float, loraRank: int, loraAlpha: int, loraDropout: float, cutoffLen: int, dataset: str, evalDataset: str, format: str):
|
|
|
|
|
+ # Input validation / processing
|
|
|
|
|
+ # TODO: --lora-dir PR once pulled will need to be applied here
|
|
|
|
|
+ loraName = f"loras/{cleanPath(None, loraName)}"
|
|
|
|
|
+ if dataset is None:
|
|
|
|
|
+ return "**Missing dataset choice input, cannot continue.**"
|
|
|
|
|
+ if format is None:
|
|
|
|
|
+ return "**Missing format choice input, cannot continue.**"
|
|
|
|
|
+ gradientAccumulationSteps = batchSize // microBatchSize
|
|
|
|
|
+ actualLR = float(learningRate)
|
|
|
|
|
+ model = shared.model
|
|
|
|
|
+ tokenizer = shared.tokenizer
|
|
|
|
|
+ tokenizer.pad_token = 0
|
|
|
|
|
+ tokenizer.padding_side = "left"
|
|
|
|
|
+ # Prep the dataset, format, etc
|
|
|
|
|
+ with open(cleanPath('training/formats', f'{format}.json'), 'r') as formatFile:
|
|
|
|
|
+ formatData: dict[str, str] = json.load(formatFile)
|
|
|
|
|
+ def tokenize(prompt):
|
|
|
|
|
+ result = tokenizer(prompt, truncation=True, max_length=cutoffLen + 1, padding="max_length")
|
|
|
|
|
+ return {
|
|
|
|
|
+ "input_ids": result["input_ids"][:-1],
|
|
|
|
|
+ "attention_mask": result["attention_mask"][:-1],
|
|
|
|
|
+ }
|
|
|
|
|
+ def generate_prompt(data_point: dict[str, str]):
|
|
|
|
|
+ for options, data in formatData.items():
|
|
|
|
|
+ if set(options.split(',')) == set(data_point.keys()):
|
|
|
|
|
+ for key, val in data_point.items():
|
|
|
|
|
+ data = data.replace(f'%{key}%', val)
|
|
|
|
|
+ return data
|
|
|
|
|
+ raise RuntimeError(f'Data-point "{data_point}" has no keyset match within format "{list(formatData.keys())}"')
|
|
|
|
|
+ def generate_and_tokenize_prompt(data_point):
|
|
|
|
|
+ prompt = generate_prompt(data_point)
|
|
|
|
|
+ return tokenize(prompt)
|
|
|
|
|
+ data = load_dataset("json", data_files=cleanPath('training/datasets', f'{dataset}.json'))
|
|
|
|
|
+ train_data = data['train'].shuffle().map(generate_and_tokenize_prompt)
|
|
|
|
|
+ if evalDataset == 'None':
|
|
|
|
|
+ evalData = None
|
|
|
|
|
+ else:
|
|
|
|
|
+ evalData = load_dataset("json", data_files=cleanPath('training/datasets', f'{evalDataset}.json'))
|
|
|
|
|
+ evalData = evalData['train'].shuffle().map(generate_and_tokenize_prompt)
|
|
|
|
|
+ # Start prepping the model itself
|
|
|
|
|
+ model = prepare_model_for_int8_training(model)
|
|
|
|
|
+ config = LoraConfig(
|
|
|
|
|
+ r=loraRank,
|
|
|
|
|
+ lora_alpha=loraAlpha,
|
|
|
|
|
+ # TODO: Should target_modules be configurable?
|
|
|
|
|
+ target_modules=[ "q_proj", "v_proj" ],
|
|
|
|
|
+ lora_dropout=loraDropout,
|
|
|
|
|
+ bias="none",
|
|
|
|
|
+ task_type="CAUSAL_LM"
|
|
|
|
|
+ )
|
|
|
|
|
+ model = get_peft_model(model, config)
|
|
|
|
|
+ trainer = transformers.Trainer(
|
|
|
|
|
+ model=model,
|
|
|
|
|
+ train_dataset=train_data,
|
|
|
|
|
+ eval_dataset=evalData,
|
|
|
|
|
+ args=transformers.TrainingArguments(
|
|
|
|
|
+ per_device_train_batch_size=microBatchSize,
|
|
|
|
|
+ gradient_accumulation_steps=gradientAccumulationSteps,
|
|
|
|
|
+ # TODO: Should more of these be configurable? Probably.
|
|
|
|
|
+ warmup_steps=100,
|
|
|
|
|
+ num_train_epochs=epochs,
|
|
|
|
|
+ learning_rate=actualLR,
|
|
|
|
|
+ fp16=True,
|
|
|
|
|
+ logging_steps=20,
|
|
|
|
|
+ evaluation_strategy="steps" if evalData is not None else "no",
|
|
|
|
|
+ save_strategy="steps",
|
|
|
|
|
+ eval_steps=200 if evalData is not None else None,
|
|
|
|
|
+ save_steps=200,
|
|
|
|
|
+ output_dir=loraName,
|
|
|
|
|
+ save_total_limit=3,
|
|
|
|
|
+ load_best_model_at_end=True if evalData is not None else False,
|
|
|
|
|
+ # TODO: Enable multi-device support
|
|
|
|
|
+ ddp_find_unused_parameters=None,
|
|
|
|
|
+ ),
|
|
|
|
|
+ data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
|
|
|
+ )
|
|
|
|
|
+ model.config.use_cache = False
|
|
|
|
|
+ old_state_dict = model.state_dict
|
|
|
|
|
+ model.state_dict = (
|
|
|
|
|
+ lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
|
|
|
|
|
+ ).__get__(model, type(model))
|
|
|
|
|
+ if torch.__version__ >= "2" and sys.platform != "win32":
|
|
|
|
|
+ model = torch.compile(model)
|
|
|
|
|
+ # Actually start and run and save at the end
|
|
|
|
|
+ trainer.train()
|
|
|
|
|
+ model.save_pretrained(loraName)
|
|
|
|
|
+ return "Done!"
|