Sfoglia il codice sorgente

initial lora training tab

Alex "mcmonkey" Goodwin 2 anni fa
parent
commit
566898a79a

+ 139 - 0
modules/training.py

@@ -0,0 +1,139 @@
+import sys, torch, json
+from pathlib import Path
+import gradio as gr
+from datasets import load_dataset
+import transformers
+from modules import ui, shared
+from peft import prepare_model_for_int8_training, LoraConfig, get_peft_model, get_peft_model_state_dict
+
+def get_json_dataset(path: str):
+    def get_set():
+        return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path(path).glob('*.json'))), key=str.lower)
+    return get_set
+
+def create_train_interface():
+    with gr.Tab('Train LoRA', elem_id='lora-train-tab'):
+        loraName = gr.Textbox(label="Name", info="The name of your new LoRA file")
+        # TODO: Add explanations of batch sizes and recommendations. Note that batch/microBatch determines gradient accumulation and explain what that means. Note the effects on VRAM usage from changing these values.
+        microBatchSize = gr.Slider(label='Micro Batch Size', value=4, minimum=1, maximum=128, step=1, info='(TODO)')
+        batchSize = gr.Slider(label='Batch Size', value=128, minimum=1, maximum=1024, step=4, info='(TODO)')
+        epochs = gr.Slider(label='Epochs', value=1, minimum=1, maximum=1000, info='Number of times every entry in the dataset should be fed into training. So 1 means feed each item in once, 5 means feed it in five times, etc.')
+        learningRate = gr.Textbox(label='Learning Rate', value='3e-4', info='Learning rate, in scientific notation. 3e-4 is a good starting base point. 1e-2 is extremely high, 1e-6 is extremely low.')
+        # TODO: What is the actual maximum rank? Likely distinct per model. This might be better to somehow be on a log scale.
+        loraRank = gr.Slider(label='LoRA Rank', value=8, minimum=1, maximum=1024, step=4, info='LoRA Rank, or dimension count. Higher values produce a larger file with better control over the model\'s content. Smaller values produce a smaller file with less overall control. Small values like 4 or 8 are great for stylistic guidance, high values like 128 or 256 are good for teaching content upgrades. Higher ranks also require higher VRAM.')
+        loraAlpha = gr.Slider(label='LoRA Alpha', value=16, minimum=1, maximum=2048, step=4, info='LoRA Alpha. This divided by the rank becomes the scaling of the LoRA. Higher means stronger. A good standard value is twice your Rank.')
+        # TODO: Better explain what this does.
+        loraDropout = gr.Slider(label='LoRA Dropout', minimum=0.0, maximum=1.0, step=0.025, value=0.05, info='Percentage probability for dropout of LoRA layers.')
+        cutoffLen = gr.Slider(label='Cutoff Length', minimum=1,maximum=2048, value=256, step=32, info='Cutoff length for text input. Essentially, how long of a line of text to feed in at a time. Higher values require drastically more VRAM.')
+        with gr.Row():
+            datasetFunction = get_json_dataset('training/datasets')
+            dataset = gr.Dropdown(choices=datasetFunction(), value='None', label='Dataset')
+            ui.create_refresh_button(dataset, lambda : None, lambda : {'choices': datasetFunction()}, 'refresh-button')
+        with gr.Row():
+            evalDataset = gr.Dropdown(choices=datasetFunction(), value='None', label='Evaluation Dataset')
+            ui.create_refresh_button(evalDataset, lambda : None, lambda : {'choices': datasetFunction()}, 'refresh-button')
+        with gr.Row():
+            formatsFunction = get_json_dataset('training/formats')
+            format = gr.Dropdown(choices=formatsFunction(), value='None', label='Data Format')
+            ui.create_refresh_button(format, lambda : None, lambda : {'choices': formatsFunction()}, 'refresh-button')
+        startButton = gr.Button("Start LoRA Training")
+        output = gr.Markdown(value="(...)")
+        startButton.click(do_train, [loraName, microBatchSize, batchSize, epochs, learningRate, loraRank, loraAlpha, loraDropout, cutoffLen, dataset, evalDataset, format], [output])
+
+def cleanPath(basePath: str, path: str):
+    """"Strips unusual symbols and forcibly builds a path as relative to the intended directory."""
+    # TODO: Probably could do with a security audit to guarantee there's no ways this can be bypassed to target an unwanted path.
+    # Or swap it to a strict whitelist of [a-zA-Z_0-9]
+    path = path.replace('\\', '/').replace('..', '_')
+    if basePath is None:
+        return path
+    return f'{Path(basePath).absolute()}/{path}'
+
+def do_train(loraName: str, microBatchSize: int, batchSize: int, epochs: int, learningRate: float, loraRank: int, loraAlpha: int, loraDropout: float, cutoffLen: int, dataset: str, evalDataset: str, format: str):
+    # Input validation / processing
+    # TODO: --lora-dir PR once pulled will need to be applied here
+    loraName = f"loras/{cleanPath(None, loraName)}"
+    if dataset is None:
+        return "**Missing dataset choice input, cannot continue.**"
+    if format is None:
+        return "**Missing format choice input, cannot continue.**"
+    gradientAccumulationSteps = batchSize // microBatchSize
+    actualLR = float(learningRate)
+    model = shared.model
+    tokenizer = shared.tokenizer
+    tokenizer.pad_token = 0
+    tokenizer.padding_side = "left"
+    # Prep the dataset, format, etc
+    with open(cleanPath('training/formats', f'{format}.json'), 'r') as formatFile:
+        formatData: dict[str, str] = json.load(formatFile)
+    def tokenize(prompt):
+        result = tokenizer(prompt, truncation=True, max_length=cutoffLen + 1, padding="max_length")
+        return {
+            "input_ids": result["input_ids"][:-1],
+            "attention_mask": result["attention_mask"][:-1],
+        }
+    def generate_prompt(data_point: dict[str, str]):
+        for options, data in formatData.items():
+            if set(options.split(',')) == set(data_point.keys()):
+                for key, val in data_point.items():
+                    data = data.replace(f'%{key}%', val)
+            return data
+        raise RuntimeError(f'Data-point "{data_point}" has no keyset match within format "{list(formatData.keys())}"')
+    def generate_and_tokenize_prompt(data_point):
+        prompt = generate_prompt(data_point)
+        return tokenize(prompt)
+    data = load_dataset("json", data_files=cleanPath('training/datasets', f'{dataset}.json'))
+    train_data = data['train'].shuffle().map(generate_and_tokenize_prompt)
+    if evalDataset == 'None':
+        evalData = None
+    else:
+        evalData = load_dataset("json", data_files=cleanPath('training/datasets', f'{evalDataset}.json'))
+        evalData = evalData['train'].shuffle().map(generate_and_tokenize_prompt)
+    # Start prepping the model itself
+    model = prepare_model_for_int8_training(model)
+    config = LoraConfig(
+        r=loraRank,
+        lora_alpha=loraAlpha,
+        # TODO: Should target_modules be configurable?
+        target_modules=[ "q_proj", "v_proj" ],
+        lora_dropout=loraDropout,
+        bias="none",
+        task_type="CAUSAL_LM"
+    )
+    model = get_peft_model(model, config)
+    trainer = transformers.Trainer(
+        model=model,
+        train_dataset=train_data,
+        eval_dataset=evalData,
+        args=transformers.TrainingArguments(
+            per_device_train_batch_size=microBatchSize,
+            gradient_accumulation_steps=gradientAccumulationSteps,
+            # TODO: Should more of these be configurable? Probably.
+            warmup_steps=100,
+            num_train_epochs=epochs,
+            learning_rate=actualLR,
+            fp16=True,
+            logging_steps=20,
+            evaluation_strategy="steps" if evalData is not None else "no",
+            save_strategy="steps",
+            eval_steps=200 if evalData is not None else None,
+            save_steps=200,
+            output_dir=loraName,
+            save_total_limit=3,
+            load_best_model_at_end=True if evalData is not None else False,
+            # TODO: Enable multi-device support
+            ddp_find_unused_parameters=None,
+        ),
+        data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
+    )
+    model.config.use_cache = False
+    old_state_dict = model.state_dict
+    model.state_dict = (
+        lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
+    ).__get__(model, type(model))
+    if torch.__version__ >= "2" and sys.platform != "win32":
+        model = torch.compile(model)
+    # Actually start and run and save at the end
+    trainer.train()
+    model.save_pretrained(loraName)
+    return "Done!"

+ 2 - 0
requirements.txt

@@ -10,4 +10,6 @@ rwkv==0.7.0
 safetensors==0.3.0
 sentencepiece
 tqdm
+peft
+datasets
 git+https://github.com/huggingface/transformers

+ 4 - 3
server.py

@@ -8,10 +8,8 @@ from pathlib import Path
 
 import gradio as gr
 
-import modules.chat as chat
+from modules import chat, shared, ui, training
 import modules.extensions as extensions_module
-import modules.shared as shared
-import modules.ui as ui
 from modules.html_generator import generate_chat_html
 from modules.LoRA import add_lora_to_model
 from modules.models import load_model, load_soft_prompt
@@ -443,6 +441,9 @@ def create_interface():
 
             shared.gradio['reset_interface'].click(set_interface_arguments, [shared.gradio[k] for k in ['interface_modes_menu', 'extensions_menu', 'cmd_arguments_menu']], None)
             shared.gradio['reset_interface'].click(lambda : None, None, None, _js='() => {document.body.innerHTML=\'<h1 style="font-family:monospace;margin-top:20%;color:lightgray;text-align:center;">Reloading...</h1>\'; setTimeout(function(){location.reload()},2500)}')
+        
+        with gr.Tab("Training", elem_id="training-tab"):
+            training.create_train_interface()
 
         if shared.args.extensions is not None:
             extensions_module.create_extensions_block()

+ 0 - 0
training/datasets/put-trainer-datasets-here.txt


+ 4 - 0
training/formats/alpaca-chatbot-format.json

@@ -0,0 +1,4 @@
+{
+    "instruction,output": "User: %instruction%\nAssistant: %output%",
+    "instruction,input,output": "User: %instruction%: %input%\nAssistant: %output%"
+}

+ 4 - 0
training/formats/alpaca-format.json

@@ -0,0 +1,4 @@
+{
+    "instruction,output": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n%instruction%\n\n### Response:\n%output%",
+    "instruction,input,output": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n%instruction%\n\n### Input:\n%input%\n\n### Response:\n%output%"
+}

+ 0 - 0
training/formats/put-trainer-formats-here.txt