Просмотр исходного кода

Make model loading more transparent

oobabooga 3 лет назад
Родитель
Сommit
285032da36
2 измененных файлов с 9 добавлено и 11 удалено
  1. 2 6
      README.md
  2. 7 5
      server.py

+ 2 - 6
README.md

@@ -46,15 +46,11 @@ The files that you need to download and put under `models/model-name` (for insta
 
 ## Converting to pytorch
 
-This webui allows you to switch between different models on the fly, so it must be fast to load the models from disk.
-
-One way to make this process about 10x faster is to convert the models to pytorch format using the script `convert-to-torch.py`. Create a folder called `torch-dumps` and then make the conversion with:
+The script `convert-to-torch.py` allows you to convert models to .pt format, which is about 10x faster to load:
 
     python convert-to-torch.py models/model-name/
 
-The output model will be saved to `torch-dumps/model-name.pt`. This is the default way to load all models except for `gpt-neox-20b`, `opt-13b`, `OPT-13B-Erebus`, `gpt-j-6B`, and `flan-t5`. I don't remember why these models are exceptions.
-
-If I get enough ⭐s on this repository, I will make the process of loading models saner and more customizable.
+The output model will be saved to `torch-dumps/model-name.pt`. When you load a new model from the webui, it will first look for this .pt file; if it is not found, it will load the model as usual from `models/model-name/`. 
 
 ## Starting the webui
 

+ 7 - 5
server.py

@@ -1,3 +1,4 @@
+import os
 import re
 import time
 import glob
@@ -20,17 +21,18 @@ model_name = 'galactica-6.7b'
 settings_name = "Default"
 
 def load_model(model_name):
-    print(f"Loading {model_name}")
-
+    print(f"Loading {model_name}...")
     t0 = time.time()
-    if model_name in ['gpt-neox-20b', 'opt-13b', 'OPT-13B-Erebus']:
+
+    if os.path.exists(f"torch-dumps/{model_name}.pt"):
+        print("Loading in .pt format...")
+        model = torch.load(f"torch-dumps/{model_name}.pt").cuda()
+    elif model_name in ['gpt-neox-20b', 'opt-13b', 'OPT-13B-Erebus']:
         model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", device_map='auto', load_in_8bit=True)
     elif model_name in ['gpt-j-6B']:
         model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
     elif model_name in ['flan-t5']:
         model = T5ForConditionalGeneration.from_pretrained(f"models/{model_name}").cuda()
-    else:
-        model = torch.load(f"torch-dumps/{model_name}.pt").cuda()
 
     if model_name in ['gpt4chan_model_float16']:
         tokenizer = AutoTokenizer.from_pretrained("models/gpt-j-6B/")