|
|
@@ -1,3 +1,4 @@
|
|
|
+import os
|
|
|
import re
|
|
|
import time
|
|
|
import glob
|
|
|
@@ -20,17 +21,18 @@ model_name = 'galactica-6.7b'
|
|
|
settings_name = "Default"
|
|
|
|
|
|
def load_model(model_name):
|
|
|
- print(f"Loading {model_name}")
|
|
|
-
|
|
|
+ print(f"Loading {model_name}...")
|
|
|
t0 = time.time()
|
|
|
- if model_name in ['gpt-neox-20b', 'opt-13b', 'OPT-13B-Erebus']:
|
|
|
+
|
|
|
+ if os.path.exists(f"torch-dumps/{model_name}.pt"):
|
|
|
+ print("Loading in .pt format...")
|
|
|
+ model = torch.load(f"torch-dumps/{model_name}.pt").cuda()
|
|
|
+ elif model_name in ['gpt-neox-20b', 'opt-13b', 'OPT-13B-Erebus']:
|
|
|
model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", device_map='auto', load_in_8bit=True)
|
|
|
elif model_name in ['gpt-j-6B']:
|
|
|
model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
|
|
elif model_name in ['flan-t5']:
|
|
|
model = T5ForConditionalGeneration.from_pretrained(f"models/{model_name}").cuda()
|
|
|
- else:
|
|
|
- model = torch.load(f"torch-dumps/{model_name}.pt").cuda()
|
|
|
|
|
|
if model_name in ['gpt4chan_model_float16']:
|
|
|
tokenizer = AutoTokenizer.from_pretrained("models/gpt-j-6B/")
|