| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- import multiprocessing
- import llamacpp
- from modules import shared
- from modules.callbacks import Iteratorize
- class LlamaCppTokenizer:
- """A thin wrapper over the llamacpp tokenizer"""
- def __init__(self, model: llamacpp.LlamaInference):
- self._tokenizer = model.get_tokenizer()
- self.eos_token_id = 2
- self.bos_token_id = 0
- @classmethod
- def from_model(cls, model: llamacpp.LlamaInference):
- return cls(model)
- def encode(self, prompt: str):
- return self._tokenizer.tokenize(prompt)
- def decode(self, ids):
- return self._tokenizer.detokenize(ids)
- class LlamaCppModel:
- def __init__(self):
- self.initialized = False
- @classmethod
- def from_pretrained(self, path):
- params = llamacpp.InferenceParams()
- params.path_model = str(path)
- params.n_threads = shared.args.threads or multiprocessing.cpu_count() // 2
- _model = llamacpp.LlamaInference(params)
- result = self()
- result.model = _model
- result.params = params
- tokenizer = LlamaCppTokenizer.from_model(_model)
- return result, tokenizer
- def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, callback=None):
- params = self.params
- params.n_predict = token_count
- params.top_p = top_p
- params.top_k = top_k
- params.temp = temperature
- params.repeat_penalty = repetition_penalty
- # params.repeat_last_n = repeat_last_n
- # self.model.params = params
- self.model.add_bos()
- self.model.update_input(context)
- output = ""
- is_end_of_text = False
- ctr = 0
- while ctr < token_count and not is_end_of_text:
- if self.model.has_unconsumed_input():
- self.model.ingest_all_pending_input()
- else:
- self.model.eval()
- token = self.model.sample()
- text = self.model.token_to_str(token)
- output += text
- is_end_of_text = token == self.model.token_eos()
- if callback:
- callback(text)
- ctr += 1
- return output
- def generate_with_streaming(self, **kwargs):
- with Iteratorize(self.generate, kwargs, callback=None) as generator:
- reply = ''
- for token in generator:
- reply += token
- yield reply
|