| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- import math
- import sys
- import torch
- import torch.nn as nn
- import transformers.models.llama.modeling_llama
- from typing import Optional
- from typing import Tuple
- import modules.shared as shared
- if shared.args.xformers:
- try:
- import xformers.ops
- except Exception:
- print("🔴 xformers not found! Please install it before trying to use it.", file=sys.stderr)
- def hijack_llama_attention():
- if shared.args.xformers:
- transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward
- print("Replaced attention with xformers_attention")
- elif shared.args.sdp_attention:
- transformers.models.llama.modeling_llama.LlamaAttention.forward = sdp_attention_forward
- print("Replaced attention with sdp_attention")
- def xformers_forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
- output_attentions: bool = False,
- use_cache: bool = False,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- bsz, q_len, _ = hidden_states.size()
- query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
- key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
- value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
- kv_seq_len = key_states.shape[-2]
- if past_key_value is not None:
- kv_seq_len += past_key_value[0].shape[-2]
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
- query_states, key_states = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
- # [bsz, nh, t, hd]
- if past_key_value is not None:
- # reuse k, v, self_attention
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
- past_key_value = (key_states, value_states) if use_cache else None
- #We only apply xformers optimizations if we don't need to output the whole attention matrix
- if not output_attentions:
- dtype = query_states.dtype
- query_states = query_states.transpose(1, 2)
- key_states = key_states.transpose(1, 2)
- value_states = value_states.transpose(1, 2)
-
- #This is a nasty hack. We know attention_mask in transformers is either LowerTriangular or all Zeros.
- #We therefore check if one element in the upper triangular portion is zero. If it is, then the mask is all zeros.
- if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
- # input and output should be of form (bsz, q_len, num_heads, head_dim)
- attn_output = xformers.ops.memory_efficient_attention(query_states, key_states, value_states, attn_bias=None)
- else:
- # input and output should be of form (bsz, q_len, num_heads, head_dim)
- attn_output = xformers.ops.memory_efficient_attention(query_states, key_states, value_states, attn_bias=xformers.ops.LowerTriangularMask())
- attn_weights = None
- else:
- attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
- if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
- raise ValueError(
- f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
- f" {attn_weights.size()}"
- )
- if attention_mask is not None:
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
- raise ValueError(
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
- )
- attn_weights = attn_weights + attention_mask
- attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
- # upcast attention to fp32
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
- attn_output = torch.matmul(attn_weights, value_states)
- if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
- raise ValueError(
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
- f" {attn_output.size()}"
- )
- attn_output = attn_output.transpose(1, 2)
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
- attn_output = self.o_proj(attn_output)
- return attn_output, attn_weights, past_key_value
- def sdp_attention_forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
- output_attentions: bool = False,
- use_cache: bool = False,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- bsz, q_len, _ = hidden_states.size()
- query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
- key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
- value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
- kv_seq_len = key_states.shape[-2]
- if past_key_value is not None:
- kv_seq_len += past_key_value[0].shape[-2]
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
- query_states, key_states = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
- # [bsz, nh, t, hd]
- if past_key_value is not None:
- # reuse k, v, self_attention
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
- past_key_value = (key_states, value_states) if use_cache else None
- #We only apply sdp attention if we don't need to output the whole attention matrix
- if not output_attentions:
- attn_output = torch.nn.functional.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=attention_mask, is_causal=False)
- attn_weights = None
- else:
- attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
- if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
- raise ValueError(
- f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
- f" {attn_weights.size()}"
- )
- if attention_mask is not None:
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
- raise ValueError(
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
- )
- attn_weights = attn_weights + attention_mask
- attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
- # upcast attention to fp32
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
- attn_output = torch.matmul(attn_weights, value_states)
- if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
- raise ValueError(
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
- f" {attn_output.size()}"
- )
- attn_output = attn_output.transpose(1, 2)
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
- attn_output = self.o_proj(attn_output)
- return attn_output, attn_weights, past_key_value
|