download-model.py 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179
  1. '''
  2. Downloads models from Hugging Face to models/model-name.
  3. Example:
  4. python download-model.py facebook/opt-1.3b
  5. '''
  6. import argparse
  7. import base64
  8. import json
  9. import multiprocessing
  10. import re
  11. import sys
  12. from pathlib import Path
  13. import requests
  14. import tqdm
  15. from tqdm.contrib.concurrent import thread_map
  16. def get_file(url, output_folder):
  17. r = requests.get(url, stream=True)
  18. with open(output_folder / Path(url.rsplit('/', 1)[1]), 'wb') as f:
  19. total_size = int(r.headers.get('content-length', 0))
  20. block_size = 1024
  21. with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t:
  22. for data in r.iter_content(block_size):
  23. t.update(len(data))
  24. f.write(data)
  25. def sanitize_branch_name(branch_name):
  26. pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
  27. if pattern.match(branch_name):
  28. return branch_name
  29. else:
  30. raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
  31. def select_model_from_default_options():
  32. models = {
  33. "Pygmalion 6B original": ("PygmalionAI", "pygmalion-6b", "b8344bb4eb76a437797ad3b19420a13922aaabe1"),
  34. "Pygmalion 6B main": ("PygmalionAI", "pygmalion-6b", "main"),
  35. "Pygmalion 6B dev": ("PygmalionAI", "pygmalion-6b", "dev"),
  36. "Pygmalion 2.7B": ("PygmalionAI", "pygmalion-2.7b", "main"),
  37. "Pygmalion 1.3B": ("PygmalionAI", "pygmalion-1.3b", "main"),
  38. "Pygmalion 350m": ("PygmalionAI", "pygmalion-350m", "main"),
  39. "OPT 6.7b": ("facebook", "opt-6.7b", "main"),
  40. "OPT 2.7b": ("facebook", "opt-2.7b", "main"),
  41. "OPT 1.3b": ("facebook", "opt-1.3b", "main"),
  42. "OPT 350m": ("facebook", "opt-350m", "main"),
  43. }
  44. choices = {}
  45. print("Select the model that you want to download:\n")
  46. for i,name in enumerate(models):
  47. char = chr(ord('A')+i)
  48. choices[char] = name
  49. print(f"{char}) {name}")
  50. char = chr(ord('A')+len(models))
  51. print(f"{char}) None of the above")
  52. print()
  53. print("Input> ", end='')
  54. choice = input()[0].strip().upper()
  55. if choice == char:
  56. print("""\nThen type the name of your desired Hugging Face model in the format organization/name.
  57. Examples:
  58. PygmalionAI/pygmalion-6b
  59. facebook/opt-1.3b
  60. """)
  61. print("Input> ", end='')
  62. model = input()
  63. branch = "main"
  64. else:
  65. arr = models[choices[choice]]
  66. model = f"{arr[0]}/{arr[1]}"
  67. branch = arr[2]
  68. return model, branch
  69. def get_download_links_from_huggingface(model, branch):
  70. base = "https://huggingface.co"
  71. page = f"/api/models/{model}/tree/{branch}?cursor="
  72. cursor = b""
  73. links = []
  74. classifications = []
  75. has_pytorch = False
  76. has_pt = False
  77. has_safetensors = False
  78. is_lora = False
  79. while True:
  80. content = requests.get(f"{base}{page}{cursor.decode()}").content
  81. dict = json.loads(content)
  82. if len(dict) == 0:
  83. break
  84. for i in range(len(dict)):
  85. fname = dict[i]['path']
  86. if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')):
  87. is_lora = True
  88. is_pytorch = re.match("(pytorch|adapter)_model.*\.bin", fname)
  89. is_safetensors = re.match(".*\.safetensors", fname)
  90. is_pt = re.match(".*\.pt", fname)
  91. is_tokenizer = re.match("tokenizer.*\.model", fname)
  92. is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer
  93. if any((is_pytorch, is_safetensors, is_pt, is_tokenizer, is_text)):
  94. if is_text:
  95. links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
  96. classifications.append('text')
  97. continue
  98. if not args.text_only:
  99. links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
  100. if is_safetensors:
  101. has_safetensors = True
  102. classifications.append('safetensors')
  103. elif is_pytorch:
  104. has_pytorch = True
  105. classifications.append('pytorch')
  106. elif is_pt:
  107. has_pt = True
  108. classifications.append('pt')
  109. cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
  110. cursor = base64.b64encode(cursor)
  111. cursor = cursor.replace(b'=', b'%3D')
  112. # If both pytorch and safetensors are available, download safetensors only
  113. if (has_pytorch or has_pt) and has_safetensors:
  114. for i in range(len(classifications)-1, -1, -1):
  115. if classifications[i] in ['pytorch', 'pt']:
  116. links.pop(i)
  117. return links, is_lora
  118. def download_files(file_list, output_folder, num_threads=8):
  119. thread_map(lambda url: get_file(url, output_folder), file_list, max_workers=num_threads, verbose=False)
  120. if __name__ == '__main__':
  121. parser = argparse.ArgumentParser()
  122. parser.add_argument('MODEL', type=str, default=None, nargs='?')
  123. parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.')
  124. parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.')
  125. parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).')
  126. args = parser.parse_args()
  127. model = args.MODEL
  128. branch = args.branch
  129. if model is None:
  130. model, branch = select_model_from_default_options()
  131. else:
  132. if model[-1] == '/':
  133. model = model[:-1]
  134. branch = args.branch
  135. if branch is None:
  136. branch = "main"
  137. else:
  138. try:
  139. branch = sanitize_branch_name(branch)
  140. except ValueError as err_branch:
  141. print(f"Error: {err_branch}")
  142. sys.exit()
  143. links, is_lora = get_download_links_from_huggingface(model, branch)
  144. base_folder = 'models' if not is_lora else 'loras'
  145. if branch != 'main':
  146. output_folder = Path(base_folder) / (model.split('/')[-1] + f'_{branch}')
  147. else:
  148. output_folder = Path(base_folder) / model.split('/')[-1]
  149. if not output_folder.exists():
  150. output_folder.mkdir()
  151. # Downloading the files
  152. print(f"Downloading the model to {output_folder}")
  153. download_files(links, output_folder, args.threads)