models.py 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168
  1. import json
  2. import os
  3. import sys
  4. import time
  5. import zipfile
  6. from pathlib import Path
  7. import numpy as np
  8. import torch
  9. import transformers
  10. from transformers import AutoModelForCausalLM, AutoTokenizer
  11. import modules.shared as shared
  12. transformers.logging.set_verbosity_error()
  13. local_rank = None
  14. if shared.args.flexgen:
  15. from flexgen.flex_opt import (CompressionConfig, ExecutionEnv, OptLM,
  16. Policy, str2bool)
  17. if shared.args.deepspeed:
  18. import deepspeed
  19. from transformers.deepspeed import (HfDeepSpeedConfig,
  20. is_deepspeed_zero3_enabled)
  21. from modules.deepspeed_parameters import generate_ds_config
  22. # Distributed setup
  23. local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
  24. world_size = int(os.getenv("WORLD_SIZE", "1"))
  25. torch.cuda.set_device(local_rank)
  26. deepspeed.init_distributed()
  27. ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
  28. dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
  29. def load_model(model_name):
  30. print(f"Loading {model_name}...")
  31. t0 = time.time()
  32. shared.is_RWKV = model_name.lower().startswith('rwkv-')
  33. # Default settings
  34. if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.gptq_bits > 0, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
  35. if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
  36. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
  37. else:
  38. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16).cuda()
  39. # FlexGen
  40. elif shared.args.flexgen:
  41. # Initialize environment
  42. env = ExecutionEnv.create(shared.args.disk_cache_dir)
  43. # Offloading policy
  44. policy = Policy(1, 1,
  45. shared.args.percent[0], shared.args.percent[1],
  46. shared.args.percent[2], shared.args.percent[3],
  47. shared.args.percent[4], shared.args.percent[5],
  48. overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight,
  49. cpu_cache_compute=False, attn_sparsity=1.0,
  50. compress_weight=shared.args.compress_weight,
  51. comp_weight_config=CompressionConfig(
  52. num_bits=4, group_size=64,
  53. group_dim=0, symmetric=False),
  54. compress_cache=False,
  55. comp_cache_config=CompressionConfig(
  56. num_bits=4, group_size=64,
  57. group_dim=2, symmetric=False))
  58. model = OptLM(f"facebook/{shared.model_name}", env, "models", policy)
  59. # DeepSpeed ZeRO-3
  60. elif shared.args.deepspeed:
  61. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
  62. model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
  63. model.module.eval() # Inference
  64. print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
  65. # RMKV model (not on HuggingFace)
  66. elif shared.is_RWKV:
  67. from modules.RWKV import RWKVModel, RWKVTokenizer
  68. model = RWKVModel.from_pretrained(Path(f'models/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
  69. tokenizer = RWKVTokenizer.from_pretrained(Path('models'))
  70. return model, tokenizer
  71. # 4-bit LLaMA
  72. elif shared.args.gptq_bits > 0 or shared.args.load_in_4bit:
  73. from modules.quantized_LLaMA import load_quantized_LLaMA
  74. model = load_quantized_LLaMA(model_name)
  75. # Custom
  76. else:
  77. command = "AutoModelForCausalLM.from_pretrained"
  78. params = ["low_cpu_mem_usage=True"]
  79. if not shared.args.cpu and not torch.cuda.is_available():
  80. print("Warning: no GPU has been detected.\nFalling back to CPU mode.\n")
  81. shared.args.cpu = True
  82. if shared.args.cpu:
  83. params.append("low_cpu_mem_usage=True")
  84. params.append("torch_dtype=torch.float32")
  85. else:
  86. params.append("device_map='auto'")
  87. params.append("load_in_8bit=True" if shared.args.load_in_8bit else "torch_dtype=torch.bfloat16" if shared.args.bf16 else "torch_dtype=torch.float16")
  88. if shared.args.gpu_memory:
  89. memory_map = shared.args.gpu_memory
  90. max_memory = f"max_memory={{0: '{memory_map[0]}GiB'"
  91. for i in range(1, len(memory_map)):
  92. max_memory += (f", {i}: '{memory_map[i]}GiB'")
  93. max_memory += (f", 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
  94. params.append(max_memory)
  95. elif not shared.args.load_in_8bit:
  96. total_mem = (torch.cuda.get_device_properties(0).total_memory/(1024*1024))
  97. suggestion = round((total_mem-1000)/1000)*1000
  98. if total_mem-suggestion < 800:
  99. suggestion -= 1000
  100. suggestion = int(round(suggestion/1000))
  101. print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
  102. params.append(f"max_memory={{0: '{suggestion}GiB', 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
  103. if shared.args.disk:
  104. params.append(f"offload_folder='{shared.args.disk_cache_dir}'")
  105. command = f"{command}(Path(f'models/{shared.model_name}'), {', '.join(set(params))})"
  106. model = eval(command)
  107. # Loading the tokenizer
  108. if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path("models/gpt-j-6B/").exists():
  109. tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
  110. else:
  111. tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{shared.model_name}/"))
  112. tokenizer.truncation_side = 'left'
  113. print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
  114. return model, tokenizer
  115. def load_soft_prompt(name):
  116. if name == 'None':
  117. shared.soft_prompt = False
  118. shared.soft_prompt_tensor = None
  119. else:
  120. with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
  121. zf.extract('tensor.npy')
  122. zf.extract('meta.json')
  123. j = json.loads(open('meta.json', 'r').read())
  124. print(f"\nLoading the softprompt \"{name}\".")
  125. for field in j:
  126. if field != 'name':
  127. if type(j[field]) is list:
  128. print(f"{field}: {', '.join(j[field])}")
  129. else:
  130. print(f"{field}: {j[field]}")
  131. print()
  132. tensor = np.load('tensor.npy')
  133. Path('tensor.npy').unlink()
  134. Path('meta.json').unlink()
  135. tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
  136. tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
  137. shared.soft_prompt = True
  138. shared.soft_prompt_tensor = tensor
  139. return name