llamacpp_model.py 2.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182
  1. import multiprocessing
  2. import llamacpp
  3. from modules import shared
  4. from modules.callbacks import Iteratorize
  5. class LlamaCppTokenizer:
  6. """A thin wrapper over the llamacpp tokenizer"""
  7. def __init__(self, model: llamacpp.LlamaInference):
  8. self._tokenizer = model.get_tokenizer()
  9. self.eos_token_id = 2
  10. self.bos_token_id = 0
  11. @classmethod
  12. def from_model(cls, model: llamacpp.LlamaInference):
  13. return cls(model)
  14. def encode(self, prompt: str):
  15. return self._tokenizer.tokenize(prompt)
  16. def decode(self, ids):
  17. return self._tokenizer.detokenize(ids)
  18. class LlamaCppModel:
  19. def __init__(self):
  20. self.initialized = False
  21. @classmethod
  22. def from_pretrained(self, path):
  23. params = llamacpp.InferenceParams()
  24. params.path_model = str(path)
  25. params.n_threads = shared.args.threads or multiprocessing.cpu_count() // 2
  26. _model = llamacpp.LlamaInference(params)
  27. result = self()
  28. result.model = _model
  29. result.params = params
  30. tokenizer = LlamaCppTokenizer.from_model(_model)
  31. return result, tokenizer
  32. def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, callback=None):
  33. params = self.params
  34. params.n_predict = token_count
  35. params.top_p = top_p
  36. params.top_k = top_k
  37. params.temp = temperature
  38. params.repeat_penalty = repetition_penalty
  39. # params.repeat_last_n = repeat_last_n
  40. # self.model.params = params
  41. self.model.add_bos()
  42. self.model.update_input(context)
  43. output = ""
  44. is_end_of_text = False
  45. ctr = 0
  46. while ctr < token_count and not is_end_of_text:
  47. if self.model.has_unconsumed_input():
  48. self.model.ingest_all_pending_input()
  49. else:
  50. self.model.eval()
  51. token = self.model.sample()
  52. text = self.model.token_to_str(token)
  53. output += text
  54. is_end_of_text = token == self.model.token_eos()
  55. if callback:
  56. callback(text)
  57. ctr += 1
  58. return output
  59. def generate_with_streaming(self, **kwargs):
  60. with Iteratorize(self.generate, kwargs, callback=None) as generator:
  61. reply = ''
  62. for token in generator:
  63. reply += token
  64. yield reply