| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- import os
- from pathlib import Path
- import numpy as np
- from tokenizers import Tokenizer
- import modules.shared as shared
- from modules.callbacks import Iteratorize
- np.set_printoptions(precision=4, suppress=True, linewidth=200)
- os.environ['RWKV_JIT_ON'] = '1'
- os.environ["RWKV_CUDA_ON"] = '1' if shared.args.rwkv_cuda_on else '0' # use CUDA kernel for seq mode (much faster)
- from rwkv.model import RWKV
- from rwkv.utils import PIPELINE, PIPELINE_ARGS
- class RWKVModel:
- def __init__(self):
- pass
- @classmethod
- def from_pretrained(self, path, dtype="fp16", device="cuda"):
- tokenizer_path = Path(f"{path.parent}/20B_tokenizer.json")
- if shared.args.rwkv_strategy is None:
- model = RWKV(model=str(path), strategy=f'{device} {dtype}')
- else:
- model = RWKV(model=str(path), strategy=shared.args.rwkv_strategy)
- pipeline = PIPELINE(model, str(tokenizer_path))
- result = self()
- result.pipeline = pipeline
- return result
- def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=None, alpha_frequency=0.1, alpha_presence=0.1, token_ban=[0], token_stop=[], callback=None):
- args = PIPELINE_ARGS(
- temperature=temperature,
- top_p=top_p,
- top_k=top_k,
- alpha_frequency=alpha_frequency, # Frequency Penalty (as in GPT-3)
- alpha_presence=alpha_presence, # Presence Penalty (as in GPT-3)
- token_ban=token_ban, # ban the generation of some tokens
- token_stop=token_stop
- )
- return self.pipeline.generate(context, token_count=token_count, args=args, callback=callback)
- def generate_with_streaming(self, **kwargs):
- with Iteratorize(self.generate, kwargs, callback=None) as generator:
- reply = ''
- for token in generator:
- reply += token
- yield reply
- class RWKVTokenizer:
- def __init__(self):
- pass
- @classmethod
- def from_pretrained(self, path):
- tokenizer_path = path / "20B_tokenizer.json"
- tokenizer = Tokenizer.from_file(str(tokenizer_path))
- result = self()
- result.tokenizer = tokenizer
- return result
- def encode(self, prompt):
- return self.tokenizer.encode(prompt).ids
- def decode(self, ids):
- return self.tokenizer.decode(ids)
|