| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 |
- import inspect
- import re
- import sys
- from pathlib import Path
- import accelerate
- import torch
- import transformers
- from transformers import AutoConfig, AutoModelForCausalLM
- import modules.shared as shared
- sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa")))
- import llama_inference_offload
- from modelutils import find_layers
- from quant import make_quant
- def _load_quant(model, checkpoint, wbits, groupsize=-1, faster_kernel=False, exclude_layers=['lm_head'], kernel_switch_threshold=128):
- def noop(*args, **kwargs):
- pass
- config = AutoConfig.from_pretrained(model)
- torch.nn.init.kaiming_uniform_ = noop
- torch.nn.init.uniform_ = noop
- torch.nn.init.normal_ = noop
- torch.set_default_dtype(torch.half)
- transformers.modeling_utils._init_weights = False
- torch.set_default_dtype(torch.half)
- model = AutoModelForCausalLM.from_config(config)
- torch.set_default_dtype(torch.float)
- model = model.eval()
- layers = find_layers(model)
- for name in exclude_layers:
- if name in layers:
- del layers[name]
- gptq_args = inspect.getfullargspec(make_quant).args
- make_quant_kwargs = {
- 'module': model,
- 'names': layers,
- 'bits': wbits,
- }
- if 'groupsize' in gptq_args:
- make_quant_kwargs['groupsize'] = groupsize
- if 'faster' in gptq_args:
- make_quant_kwargs['faster'] = faster_kernel
- if 'kernel_switch_threshold' in gptq_args:
- make_quant_kwargs['kernel_switch_threshold'] = kernel_switch_threshold
- make_quant(**make_quant_kwargs)
- del layers
- print('Loading model ...')
- if checkpoint.endswith('.safetensors'):
- from safetensors.torch import load_file as safe_load
- model.load_state_dict(safe_load(checkpoint), strict=False)
- else:
- model.load_state_dict(torch.load(checkpoint), strict=False)
- model.seqlen = 2048
- print('Done.')
- return model
- def load_quantized(model_name):
- if not shared.args.model_type:
- # Try to determine model type from model name
- name = model_name.lower()
- if any((k in name for k in ['llama', 'alpaca', 'vicuna'])):
- model_type = 'llama'
- elif any((k in name for k in ['opt-', 'galactica'])):
- model_type = 'opt'
- elif any((k in name for k in ['gpt-j', 'pygmalion-6b'])):
- model_type = 'gptj'
- else:
- print("Can't determine model type from model name. Please specify it manually using --model_type "
- "argument")
- exit()
- else:
- model_type = shared.args.model_type.lower()
- if shared.args.pre_layer and model_type == 'llama':
- load_quant = llama_inference_offload.load_quant
- elif model_type in ('llama', 'opt', 'gptj'):
- if shared.args.pre_layer:
- print("Warning: ignoring --pre_layer because it only works for llama model type.")
- load_quant = _load_quant
- else:
- print("Unknown pre-quantized model type specified. Only 'llama', 'opt' and 'gptj' are supported")
- exit()
- # Now we are going to try to locate the quantized model file.
- path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
- found_pts = list(path_to_model.glob("*.pt"))
- found_safetensors = list(path_to_model.glob("*.safetensors"))
- pt_path = None
- if len(found_pts) == 1:
- pt_path = found_pts[0]
- elif len(found_safetensors) == 1:
- pt_path = found_safetensors[0]
- else:
- if path_to_model.name.lower().startswith('llama-7b'):
- pt_model = f'llama-7b-{shared.args.wbits}bit'
- elif path_to_model.name.lower().startswith('llama-13b'):
- pt_model = f'llama-13b-{shared.args.wbits}bit'
- elif path_to_model.name.lower().startswith('llama-30b'):
- pt_model = f'llama-30b-{shared.args.wbits}bit'
- elif path_to_model.name.lower().startswith('llama-65b'):
- pt_model = f'llama-65b-{shared.args.wbits}bit'
- else:
- pt_model = f'{model_name}-{shared.args.wbits}bit'
- # Try to find the .safetensors or .pt both in the model dir and in the subfolder
- for path in [Path(p + ext) for ext in ['.safetensors', '.pt'] for p in [f"{shared.args.model_dir}/{pt_model}", f"{path_to_model}/{pt_model}"]]:
- if path.exists():
- print(f"Found {path}")
- pt_path = path
- break
- if not pt_path:
- print("Could not find the quantized model in .pt or .safetensors format, exiting...")
- exit()
- # qwopqwop200's offload
- if model_type == 'llama' and shared.args.pre_layer:
- model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, shared.args.pre_layer)
- else:
- threshold = False if model_type == 'gptj' else 128
- model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, kernel_switch_threshold=threshold)
- # accelerate offload (doesn't work properly)
- if shared.args.gpu_memory:
- memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory))
- max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB'
- max_memory = {}
- for i in range(len(memory_map)):
- max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i]
- max_memory['cpu'] = max_cpu_memory
- device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LlamaDecoderLayer"])
- print("Using the following device map for the 4-bit model:", device_map)
- # https://huggingface.co/docs/accelerate/package_reference/big_modeling#accelerate.dispatch_model
- model = accelerate.dispatch_model(model, device_map=device_map, offload_buffers=True)
- # No offload
- elif not shared.args.cpu:
- model = model.to(torch.device('cuda:0'))
- return model
|