models.py 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188
  1. import json
  2. import os
  3. import time
  4. import zipfile
  5. from pathlib import Path
  6. import numpy as np
  7. import torch
  8. import transformers
  9. from accelerate import infer_auto_device_map, init_empty_weights
  10. from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
  11. BitsAndBytesConfig)
  12. import modules.shared as shared
  13. transformers.logging.set_verbosity_error()
  14. local_rank = None
  15. if shared.args.flexgen:
  16. from flexgen.flex_opt import CompressionConfig, ExecutionEnv, OptLM, Policy
  17. if shared.args.deepspeed:
  18. import deepspeed
  19. from transformers.deepspeed import (HfDeepSpeedConfig,
  20. is_deepspeed_zero3_enabled)
  21. from modules.deepspeed_parameters import generate_ds_config
  22. # Distributed setup
  23. local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
  24. world_size = int(os.getenv("WORLD_SIZE", "1"))
  25. torch.cuda.set_device(local_rank)
  26. deepspeed.init_distributed()
  27. ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
  28. dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
  29. def load_model(model_name):
  30. print(f"Loading {model_name}...")
  31. t0 = time.time()
  32. shared.is_RWKV = model_name.lower().startswith('rwkv-')
  33. # Default settings
  34. if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.gptq_bits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
  35. if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
  36. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
  37. else:
  38. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16).cuda()
  39. # FlexGen
  40. elif shared.args.flexgen:
  41. # Initialize environment
  42. env = ExecutionEnv.create(shared.args.disk_cache_dir)
  43. # Offloading policy
  44. policy = Policy(1, 1,
  45. shared.args.percent[0], shared.args.percent[1],
  46. shared.args.percent[2], shared.args.percent[3],
  47. shared.args.percent[4], shared.args.percent[5],
  48. overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight,
  49. cpu_cache_compute=False, attn_sparsity=1.0,
  50. compress_weight=shared.args.compress_weight,
  51. comp_weight_config=CompressionConfig(
  52. num_bits=4, group_size=64,
  53. group_dim=0, symmetric=False),
  54. compress_cache=False,
  55. comp_cache_config=CompressionConfig(
  56. num_bits=4, group_size=64,
  57. group_dim=2, symmetric=False))
  58. model = OptLM(f"facebook/{shared.model_name}", env, "models", policy)
  59. # DeepSpeed ZeRO-3
  60. elif shared.args.deepspeed:
  61. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
  62. model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
  63. model.module.eval() # Inference
  64. print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
  65. # RMKV model (not on HuggingFace)
  66. elif shared.is_RWKV:
  67. from modules.RWKV import RWKVModel, RWKVTokenizer
  68. model = RWKVModel.from_pretrained(Path(f'models/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
  69. tokenizer = RWKVTokenizer.from_pretrained(Path('models'))
  70. return model, tokenizer
  71. # Quantized model
  72. elif shared.args.gptq_bits > 0:
  73. from modules.GPTQ_loader import load_quantized
  74. model = load_quantized(model_name)
  75. # Custom
  76. else:
  77. params = {"low_cpu_mem_usage": True}
  78. if not shared.args.cpu and not torch.cuda.is_available():
  79. print("Warning: torch.cuda.is_available() returned False.\nThis means that no GPU has been detected.\nFalling back to CPU mode.\n")
  80. shared.args.cpu = True
  81. if shared.args.cpu:
  82. params["torch_dtype"] = torch.float32
  83. else:
  84. params["device_map"] = 'auto'
  85. if shared.args.load_in_8bit:
  86. params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True)
  87. elif shared.args.bf16:
  88. params["torch_dtype"] = torch.bfloat16
  89. else:
  90. params["torch_dtype"] = torch.float16
  91. if shared.args.gpu_memory:
  92. memory_map = shared.args.gpu_memory
  93. max_memory = {}
  94. for i in range(len(memory_map)):
  95. max_memory[i] = f'{memory_map[i]}GiB'
  96. max_memory['cpu'] = f'{shared.args.cpu_memory or 99}GiB'
  97. params['max_memory'] = max_memory
  98. else:
  99. total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024*1024))
  100. suggestion = round((total_mem-1000) / 1000) * 1000
  101. if total_mem - suggestion < 800:
  102. suggestion -= 1000
  103. suggestion = int(round(suggestion/1000))
  104. print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
  105. max_memory = {0: f'{suggestion}GiB', 'cpu': f'{shared.args.cpu_memory or 99}GiB'}
  106. params['max_memory'] = max_memory
  107. if shared.args.disk:
  108. params["offload_folder"] = shared.args.disk_cache_dir
  109. checkpoint = Path(f'models/{shared.model_name}')
  110. if shared.args.load_in_8bit and params.get('max_memory', None) is not None and params['device_map'] == 'auto':
  111. config = AutoConfig.from_pretrained(checkpoint)
  112. with init_empty_weights():
  113. model = AutoModelForCausalLM.from_config(config)
  114. model.tie_weights()
  115. params['device_map'] = infer_auto_device_map(
  116. model,
  117. dtype=torch.int8,
  118. max_memory=params['max_memory'],
  119. no_split_module_classes = model._no_split_modules
  120. )
  121. model = AutoModelForCausalLM.from_pretrained(checkpoint, **params)
  122. # Loading the tokenizer
  123. if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path("models/gpt-j-6B/").exists():
  124. tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
  125. else:
  126. tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{shared.model_name}/"))
  127. tokenizer.truncation_side = 'left'
  128. print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
  129. return model, tokenizer
  130. def load_soft_prompt(name):
  131. if name == 'None':
  132. shared.soft_prompt = False
  133. shared.soft_prompt_tensor = None
  134. else:
  135. with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
  136. zf.extract('tensor.npy')
  137. zf.extract('meta.json')
  138. j = json.loads(open('meta.json', 'r').read())
  139. print(f"\nLoading the softprompt \"{name}\".")
  140. for field in j:
  141. if field != 'name':
  142. if type(j[field]) is list:
  143. print(f"{field}: {', '.join(j[field])}")
  144. else:
  145. print(f"{field}: {j[field]}")
  146. print()
  147. tensor = np.load('tensor.npy')
  148. Path('tensor.npy').unlink()
  149. Path('meta.json').unlink()
  150. tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
  151. tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
  152. shared.soft_prompt = True
  153. shared.soft_prompt_tensor = tensor
  154. return name