text_generation.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276
  1. import re
  2. import time
  3. import traceback
  4. import numpy as np
  5. import torch
  6. import transformers
  7. import modules.shared as shared
  8. from modules.callbacks import (Iteratorize, Stream,
  9. _SentinelTokenStoppingCriteria)
  10. from modules.extensions import apply_extensions
  11. from modules.html_generator import generate_4chan_html, generate_basic_html
  12. from modules.models import clear_torch_cache, local_rank
  13. def get_max_prompt_length(tokens):
  14. max_length = 2048 - tokens
  15. if shared.soft_prompt:
  16. max_length -= shared.soft_prompt_tensor.shape[1]
  17. return max_length
  18. def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
  19. if any((shared.is_RWKV, shared.is_llamacpp)):
  20. input_ids = shared.tokenizer.encode(str(prompt))
  21. input_ids = np.array(input_ids).reshape(1, len(input_ids))
  22. return input_ids
  23. else:
  24. input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
  25. if type(shared.tokenizer) is transformers.LlamaTokenizer and input_ids[0][0] == 29871:
  26. input_ids = input_ids[:, 1:]
  27. if shared.args.cpu:
  28. return input_ids
  29. elif shared.args.flexgen:
  30. return input_ids.numpy()
  31. elif shared.args.deepspeed:
  32. return input_ids.to(device=local_rank)
  33. elif torch.has_mps:
  34. device = torch.device('mps')
  35. return input_ids.to(device)
  36. else:
  37. return input_ids.cuda()
  38. def decode(output_ids):
  39. # Open Assistant relies on special tokens like <|endoftext|>
  40. if re.match('.*(oasst|galactica)-*', shared.model_name.lower()):
  41. return shared.tokenizer.decode(output_ids, skip_special_tokens=False)
  42. else:
  43. reply = shared.tokenizer.decode(output_ids, skip_special_tokens=True)
  44. reply = reply.replace(r'<|endoftext|>', '')
  45. return reply
  46. def generate_softprompt_input_tensors(input_ids):
  47. inputs_embeds = shared.model.transformer.wte(input_ids)
  48. inputs_embeds = torch.cat((shared.soft_prompt_tensor, inputs_embeds), dim=1)
  49. filler_input_ids = torch.zeros((1, inputs_embeds.shape[1]), dtype=input_ids.dtype).to(shared.model.device)
  50. # filler_input_ids += shared.model.config.bos_token_id # setting dummy input_ids to bos tokens
  51. return inputs_embeds, filler_input_ids
  52. # Removes empty replies from gpt4chan outputs
  53. def fix_gpt4chan(s):
  54. for i in range(10):
  55. s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
  56. s = re.sub("--- [0-9]*\n *\n---", "---", s)
  57. s = re.sub("--- [0-9]*\n\n\n---", "---", s)
  58. return s
  59. # Fix the LaTeX equations in galactica
  60. def fix_galactica(s):
  61. s = s.replace(r'\[', r'$')
  62. s = s.replace(r'\]', r'$')
  63. s = s.replace(r'\(', r'$')
  64. s = s.replace(r'\)', r'$')
  65. s = s.replace(r'$$', r'$')
  66. s = re.sub(r'\n', r'\n\n', s)
  67. s = re.sub(r"\n{3,}", "\n\n", s)
  68. return s
  69. def formatted_outputs(reply, model_name):
  70. if not shared.is_chat():
  71. if 'galactica' in model_name.lower():
  72. reply = fix_galactica(reply)
  73. return reply, reply, generate_basic_html(reply)
  74. elif any((k in shared.model_name.lower() for k in ['gpt4chan', 'gpt-4chan'])):
  75. reply = fix_gpt4chan(reply)
  76. return reply, 'Only applicable for GALACTICA models.', generate_4chan_html(reply)
  77. else:
  78. return reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply)
  79. else:
  80. return reply
  81. def set_manual_seed(seed):
  82. if seed != -1:
  83. torch.manual_seed(seed)
  84. if torch.cuda.is_available():
  85. torch.cuda.manual_seed_all(seed)
  86. def stop_everything_event():
  87. shared.stop_everything = True
  88. def generate_reply(question, generate_state, eos_token=None, stopping_strings=[]):
  89. clear_torch_cache()
  90. set_manual_seed(generate_state['seed'])
  91. shared.stop_everything = False
  92. generate_params = {}
  93. t0 = time.time()
  94. original_question = question
  95. if not shared.is_chat():
  96. question = apply_extensions(question, 'input')
  97. if shared.args.verbose:
  98. print(f'\n\n{question}\n--------------------\n')
  99. # These models are not part of Hugging Face, so we handle them
  100. # separately and terminate the function call earlier
  101. if any((shared.is_RWKV, shared.is_llamacpp)):
  102. for k in ['temperature', 'top_p', 'top_k', 'repetition_penalty']:
  103. generate_params[k] = generate_state[k]
  104. generate_params['token_count'] = generate_state['max_new_tokens']
  105. try:
  106. if shared.args.no_stream:
  107. reply = shared.model.generate(context=question, **generate_params)
  108. output = original_question + reply
  109. if not shared.is_chat():
  110. reply = original_question + apply_extensions(reply, 'output')
  111. yield formatted_outputs(reply, shared.model_name)
  112. else:
  113. if not shared.is_chat():
  114. yield formatted_outputs(question, shared.model_name)
  115. # RWKV has proper streaming, which is very nice.
  116. # No need to generate 8 tokens at a time.
  117. for reply in shared.model.generate_with_streaming(context=question, **generate_params):
  118. output = original_question + reply
  119. if not shared.is_chat():
  120. reply = original_question + apply_extensions(reply, 'output')
  121. yield formatted_outputs(reply, shared.model_name)
  122. except Exception:
  123. traceback.print_exc()
  124. finally:
  125. t1 = time.time()
  126. original_tokens = len(encode(original_question)[0])
  127. new_tokens = len(encode(output)[0]) - original_tokens
  128. print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens})')
  129. return
  130. input_ids = encode(question, generate_state['max_new_tokens'])
  131. original_input_ids = input_ids
  132. output = input_ids[0]
  133. cuda = not any((shared.args.cpu, shared.args.deepspeed, shared.args.flexgen))
  134. eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else []
  135. if eos_token is not None:
  136. eos_token_ids.append(int(encode(eos_token)[0][-1]))
  137. stopping_criteria_list = transformers.StoppingCriteriaList()
  138. if type(stopping_strings) is list and len(stopping_strings) > 0:
  139. t = [encode(string, 0, add_special_tokens=False) for string in stopping_strings]
  140. stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=t, starting_idx=len(input_ids[0])))
  141. if not shared.args.flexgen:
  142. for k in ['max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']:
  143. generate_params[k] = generate_state[k]
  144. generate_params['eos_token_id'] = eos_token_ids
  145. generate_params['stopping_criteria'] = stopping_criteria_list
  146. if shared.args.no_stream:
  147. generate_params['min_length'] = 0
  148. else:
  149. for k in ['max_new_tokens', 'do_sample', 'temperature']:
  150. generate_params[k] = generate_state[k]
  151. generate_params['stop'] = generate_state['eos_token_ids'][-1]
  152. if not shared.args.no_stream:
  153. generate_params['max_new_tokens'] = 8
  154. if shared.args.no_cache:
  155. generate_params.update({'use_cache': False})
  156. if shared.args.deepspeed:
  157. generate_params.update({'synced_gpus': True})
  158. if shared.soft_prompt:
  159. inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
  160. generate_params.update({'inputs_embeds': inputs_embeds})
  161. generate_params.update({'inputs': filler_input_ids})
  162. else:
  163. generate_params.update({'inputs': input_ids})
  164. try:
  165. # Generate the entire reply at once.
  166. if shared.args.no_stream:
  167. with torch.no_grad():
  168. output = shared.model.generate(**generate_params)[0]
  169. if cuda:
  170. output = output.cuda()
  171. if shared.soft_prompt:
  172. output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
  173. new_tokens = len(output) - len(input_ids[0])
  174. reply = decode(output[-new_tokens:])
  175. if not shared.is_chat():
  176. reply = original_question + apply_extensions(reply, 'output')
  177. yield formatted_outputs(reply, shared.model_name)
  178. # Stream the reply 1 token at a time.
  179. # This is based on the trick of using 'stopping_criteria' to create an iterator.
  180. elif not shared.args.flexgen:
  181. def generate_with_callback(callback=None, **kwargs):
  182. kwargs['stopping_criteria'].append(Stream(callback_func=callback))
  183. clear_torch_cache()
  184. with torch.no_grad():
  185. shared.model.generate(**kwargs)
  186. def generate_with_streaming(**kwargs):
  187. return Iteratorize(generate_with_callback, kwargs, callback=None)
  188. if not shared.is_chat():
  189. yield formatted_outputs(original_question, shared.model_name)
  190. with generate_with_streaming(**generate_params) as generator:
  191. for output in generator:
  192. if shared.soft_prompt:
  193. output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
  194. new_tokens = len(output) - len(input_ids[0])
  195. reply = decode(output[-new_tokens:])
  196. if not shared.is_chat():
  197. reply = original_question + apply_extensions(reply, 'output')
  198. if output[-1] in eos_token_ids:
  199. break
  200. yield formatted_outputs(reply, shared.model_name)
  201. # Stream the output naively for FlexGen since it doesn't support 'stopping_criteria'
  202. else:
  203. for i in range(generate_state['max_new_tokens'] // 8 + 1):
  204. clear_torch_cache()
  205. with torch.no_grad():
  206. output = shared.model.generate(**generate_params)[0]
  207. if shared.soft_prompt:
  208. output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
  209. new_tokens = len(output) - len(original_input_ids[0])
  210. reply = decode(output[-new_tokens:])
  211. if not shared.is_chat():
  212. reply = original_question + apply_extensions(reply, 'output')
  213. if np.count_nonzero(np.isin(input_ids[0], eos_token_ids)) < np.count_nonzero(np.isin(output, eos_token_ids)):
  214. break
  215. yield formatted_outputs(reply, shared.model_name)
  216. input_ids = np.reshape(output, (1, output.shape[0]))
  217. if shared.soft_prompt:
  218. inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
  219. generate_params.update({'inputs_embeds': inputs_embeds})
  220. generate_params.update({'inputs': filler_input_ids})
  221. else:
  222. generate_params.update({'inputs': input_ids})
  223. yield formatted_outputs(reply, shared.model_name)
  224. except Exception:
  225. traceback.print_exc()
  226. finally:
  227. t1 = time.time()
  228. original_tokens = len(original_input_ids[0])
  229. new_tokens = len(output) - original_tokens
  230. print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens})')
  231. return