| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301 |
- import random
- import re
- import time
- import traceback
- import numpy as np
- import torch
- import transformers
- import modules.shared as shared
- from modules.callbacks import (Iteratorize, Stream,
- _SentinelTokenStoppingCriteria)
- from modules.extensions import apply_extensions
- from modules.html_generator import generate_4chan_html, generate_basic_html
- from modules.models import clear_torch_cache, local_rank
- def get_max_prompt_length(state):
- max_length = state['truncation_length'] - state['max_new_tokens']
- if shared.soft_prompt:
- max_length -= shared.soft_prompt_tensor.shape[1]
- return max_length
- def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_length=None):
- if any((shared.is_RWKV, shared.is_llamacpp)):
- input_ids = shared.tokenizer.encode(str(prompt))
- input_ids = np.array(input_ids).reshape(1, len(input_ids))
- return input_ids
- else:
- input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', add_special_tokens=add_special_tokens)
- # This is a hack for making replies more creative.
- if not add_bos_token and input_ids[0][0] == shared.tokenizer.bos_token_id:
- input_ids = input_ids[:, 1:]
- # Llama adds this extra token when the first character is '\n', and this
- # compromises the stopping criteria, so we just remove it
- if type(shared.tokenizer) is transformers.LlamaTokenizer and input_ids[0][0] == 29871:
- input_ids = input_ids[:, 1:]
- # Handling truncation
- if truncation_length is not None:
- input_ids = input_ids[:, -truncation_length:]
- if any((shared.is_RWKV, shared.is_llamacpp, shared.args.cpu)):
- return input_ids
- elif shared.args.flexgen:
- return input_ids.numpy()
- elif shared.args.deepspeed:
- return input_ids.to(device=local_rank)
- elif torch.has_mps:
- device = torch.device('mps')
- return input_ids.to(device)
- else:
- return input_ids.cuda()
- def decode(output_ids):
- # Open Assistant relies on special tokens like <|endoftext|>
- if re.match('.*(oasst|galactica)-*', shared.model_name.lower()):
- return shared.tokenizer.decode(output_ids, skip_special_tokens=False)
- else:
- reply = shared.tokenizer.decode(output_ids, skip_special_tokens=True)
- reply = reply.replace(r'<|endoftext|>', '')
- return reply
- def generate_softprompt_input_tensors(input_ids):
- inputs_embeds = shared.model.transformer.wte(input_ids)
- inputs_embeds = torch.cat((shared.soft_prompt_tensor, inputs_embeds), dim=1)
- filler_input_ids = torch.zeros((1, inputs_embeds.shape[1]), dtype=input_ids.dtype).to(shared.model.device)
- # filler_input_ids += shared.model.config.bos_token_id # setting dummy input_ids to bos tokens
- return inputs_embeds, filler_input_ids
- # Removes empty replies from gpt4chan outputs
- def fix_gpt4chan(s):
- for i in range(10):
- s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
- s = re.sub("--- [0-9]*\n *\n---", "---", s)
- s = re.sub("--- [0-9]*\n\n\n---", "---", s)
- return s
- # Fix the LaTeX equations in galactica
- def fix_galactica(s):
- s = s.replace(r'\[', r'$')
- s = s.replace(r'\]', r'$')
- s = s.replace(r'\(', r'$')
- s = s.replace(r'\)', r'$')
- s = s.replace(r'$$', r'$')
- s = re.sub(r'\n', r'\n\n', s)
- s = re.sub(r"\n{3,}", "\n\n", s)
- return s
- def formatted_outputs(reply, model_name):
- if not shared.is_chat():
- if 'galactica' in model_name.lower():
- reply = fix_galactica(reply)
- return reply, reply, generate_basic_html(reply)
- elif any((k in shared.model_name.lower() for k in ['gpt4chan', 'gpt-4chan'])):
- reply = fix_gpt4chan(reply)
- return reply, 'Only applicable for GALACTICA models.', generate_4chan_html(reply)
- else:
- return reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply)
- else:
- return reply
- def set_manual_seed(seed):
- seed = int(seed)
- if seed == -1:
- seed = random.randint(1, 2**31)
- torch.manual_seed(seed)
- if torch.cuda.is_available():
- torch.cuda.manual_seed_all(seed)
- return seed
- def stop_everything_event():
- shared.stop_everything = True
- def generate_reply(question, state, eos_token=None, stopping_strings=[]):
- clear_torch_cache()
- seed = set_manual_seed(state['seed'])
- shared.stop_everything = False
- generate_params = {}
- t0 = time.time()
- original_question = question
- if not shared.is_chat():
- question = apply_extensions(question, 'input')
- # These models are not part of Hugging Face, so we handle them
- # separately and terminate the function call earlier
- if any((shared.is_RWKV, shared.is_llamacpp)):
- if shared.args.verbose:
- print(f'\n\n{question}\n--------------------\n')
- for k in ['temperature', 'top_p', 'top_k', 'repetition_penalty']:
- generate_params[k] = state[k]
- generate_params['token_count'] = state['max_new_tokens']
- try:
- if shared.args.no_stream:
- reply = shared.model.generate(context=question, **generate_params)
- output = original_question + reply
- if not shared.is_chat():
- reply = original_question + apply_extensions(reply, 'output')
- yield formatted_outputs(reply, shared.model_name)
- else:
- if not shared.is_chat():
- yield formatted_outputs(question, shared.model_name)
- # RWKV has proper streaming, which is very nice.
- # No need to generate 8 tokens at a time.
- for reply in shared.model.generate_with_streaming(context=question, **generate_params):
- output = original_question + reply
- if not shared.is_chat():
- reply = original_question + apply_extensions(reply, 'output')
- yield formatted_outputs(reply, shared.model_name)
- except Exception:
- traceback.print_exc()
- finally:
- t1 = time.time()
- original_tokens = len(encode(original_question)[0])
- new_tokens = len(encode(output)[0]) - original_tokens
- print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})')
- return
- input_ids = encode(question, add_bos_token=state['add_bos_token'], truncation_length=get_max_prompt_length(state))
- original_input_ids = input_ids
- output = input_ids[0]
- if shared.args.verbose:
- print(f'\n\n{decode(input_ids[0])}\n--------------------\n')
- cuda = not any((shared.args.cpu, shared.args.deepspeed, shared.args.flexgen))
- eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else []
- if eos_token is not None:
- eos_token_ids.append(int(encode(eos_token)[0][-1]))
- # Handling the stopping strings
- stopping_criteria_list = transformers.StoppingCriteriaList()
- for st in [stopping_strings, state['custom_stopping_strings']]:
- if type(st) is list and len(st) > 0:
- sentinel_token_ids = [encode(string, add_special_tokens=False) for string in st]
- stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=sentinel_token_ids, starting_idx=len(input_ids[0])))
- break
- if not shared.args.flexgen:
- for k in ['max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']:
- generate_params[k] = state[k]
- generate_params['eos_token_id'] = eos_token_ids
- generate_params['stopping_criteria'] = stopping_criteria_list
- if state['ban_eos_token']:
- generate_params['suppress_tokens'] = [shared.tokenizer.eos_token_id]
- else:
- for k in ['max_new_tokens', 'do_sample', 'temperature']:
- generate_params[k] = state[k]
- generate_params['stop'] = state['eos_token_ids'][-1]
- if not shared.args.no_stream:
- generate_params['max_new_tokens'] = 8
- if shared.args.no_cache:
- generate_params.update({'use_cache': False})
- if shared.args.deepspeed:
- generate_params.update({'synced_gpus': True})
- if shared.soft_prompt:
- inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
- generate_params.update({'inputs_embeds': inputs_embeds})
- generate_params.update({'inputs': filler_input_ids})
- else:
- generate_params.update({'inputs': input_ids})
- try:
- # Generate the entire reply at once.
- if shared.args.no_stream:
- with torch.no_grad():
- output = shared.model.generate(**generate_params)[0]
- if cuda:
- output = output.cuda()
- if shared.soft_prompt:
- output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
- new_tokens = len(output) - len(input_ids[0])
- reply = decode(output[-new_tokens:])
- if not shared.is_chat():
- reply = original_question + apply_extensions(reply, 'output')
- yield formatted_outputs(reply, shared.model_name)
- # Stream the reply 1 token at a time.
- # This is based on the trick of using 'stopping_criteria' to create an iterator.
- elif not shared.args.flexgen:
- def generate_with_callback(callback=None, **kwargs):
- kwargs['stopping_criteria'].append(Stream(callback_func=callback))
- clear_torch_cache()
- with torch.no_grad():
- shared.model.generate(**kwargs)
- def generate_with_streaming(**kwargs):
- return Iteratorize(generate_with_callback, kwargs, callback=None)
- if not shared.is_chat():
- yield formatted_outputs(original_question, shared.model_name)
- with generate_with_streaming(**generate_params) as generator:
- for output in generator:
- if shared.soft_prompt:
- output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
- new_tokens = len(output) - len(input_ids[0])
- reply = decode(output[-new_tokens:])
- if not shared.is_chat():
- reply = original_question + apply_extensions(reply, 'output')
- if output[-1] in eos_token_ids:
- break
- yield formatted_outputs(reply, shared.model_name)
- # Stream the output naively for FlexGen since it doesn't support 'stopping_criteria'
- else:
- for i in range(state['max_new_tokens'] // 8 + 1):
- clear_torch_cache()
- with torch.no_grad():
- output = shared.model.generate(**generate_params)[0]
- if shared.soft_prompt:
- output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
- new_tokens = len(output) - len(original_input_ids[0])
- reply = decode(output[-new_tokens:])
- if not shared.is_chat():
- reply = original_question + apply_extensions(reply, 'output')
- if np.count_nonzero(np.isin(input_ids[0], eos_token_ids)) < np.count_nonzero(np.isin(output, eos_token_ids)):
- break
- yield formatted_outputs(reply, shared.model_name)
- input_ids = np.reshape(output, (1, output.shape[0]))
- if shared.soft_prompt:
- inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
- generate_params.update({'inputs_embeds': inputs_embeds})
- generate_params.update({'inputs': filler_input_ids})
- else:
- generate_params.update({'inputs': input_ids})
- yield formatted_outputs(reply, shared.model_name)
- except Exception:
- traceback.print_exc()
- finally:
- t1 = time.time()
- original_tokens = len(original_input_ids[0])
- new_tokens = len(output) - original_tokens
- print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})')
- return
|