| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147 |
- import argparse
- import base64
- import copy
- import gc
- import glob
- import io
- import json
- import os
- import re
- import sys
- import time
- import warnings
- import zipfile
- from datetime import datetime
- from pathlib import Path
- import gradio as gr
- import numpy as np
- import torch
- import transformers
- from PIL import Image
- from tqdm import tqdm
- from transformers import AutoConfig
- from transformers import AutoModelForCausalLM
- from transformers import AutoTokenizer
- from io import BytesIO
- from modules.html_generator import *
- from modules.stopping_criteria import _SentinelTokenStoppingCriteria
- from modules.ui import *
- transformers.logging.set_verbosity_error()
- parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog,max_help_position=54))
- parser.add_argument('--model', type=str, help='Name of the model to load by default.')
- parser.add_argument('--notebook', action='store_true', help='Launch the web UI in notebook mode, where the output is written to the same text box as the input.')
- parser.add_argument('--chat', action='store_true', help='Launch the web UI in chat mode.')
- parser.add_argument('--cai-chat', action='store_true', help='Launch the web UI in chat mode with a style similar to Character.AI\'s. If the file img_bot.png or img_bot.jpg exists in the same folder as server.py, this image will be used as the bot\'s profile picture. Similarly, img_me.png or img_me.jpg will be used as your profile picture.')
- parser.add_argument('--picture', action='store_true', help='Adds an ability to send pictures in chat UI modes. Captions are generated by BLIP.')
- parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
- parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.')
- parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
- parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
- parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')
- parser.add_argument('--disk-cache-dir', type=str, default="cache", help='Directory to save the disk cache to. Defaults to "cache".')
- parser.add_argument('--gpu-memory', type=int, help='Maximum GPU memory in GiB to allocate. This is useful if you get out of memory errors while trying to generate text. Must be an integer number.')
- parser.add_argument('--cpu-memory', type=int, help='Maximum CPU memory in GiB to allocate for offloaded weights. Must be an integer number. Defaults to 99.')
- parser.add_argument('--flexgen', action='store_true', help='Enable the use of FlexGen offloading.')
- parser.add_argument('--percent', nargs="+", type=int, default=[0, 100, 100, 0, 100, 0], help='FlexGen: allocation percentages. Must be 6 numbers separated by spaces (default: %(default)s).')
- parser.add_argument("--compress-weight", action="store_true", help="FlexGen: Whether to compress weight (default: %(default)s).")
- parser.add_argument('--deepspeed', action='store_true', help='Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration.')
- parser.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.')
- parser.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.')
- parser.add_argument('--no-stream', action='store_true', help='Don\'t stream the text output in real time. This improves the text generation performance.')
- parser.add_argument('--settings', type=str, help='Load the default interface settings from this json file. See settings-template.json for an example.')
- parser.add_argument('--extensions', type=str, help='The list of extensions to load. If you want to load more than one extension, write the names separated by commas and between quotation marks, "like,this".')
- parser.add_argument('--listen', action='store_true', help='Make the web UI reachable from your local network.')
- parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
- parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
- parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
- args = parser.parse_args()
- if (args.chat or args.cai_chat) and not args.no_stream:
- print("Warning: chat mode currently becomes somewhat slower with text streaming on.\nConsider starting the web UI with the --no-stream option.\n")
-
- settings = {
- 'max_new_tokens': 200,
- 'max_new_tokens_min': 1,
- 'max_new_tokens_max': 2000,
- 'preset': 'NovelAI-Sphinx Moth',
- 'name1': 'Person 1',
- 'name2': 'Person 2',
- 'context': 'This is a conversation between two people.',
- 'prompt': 'Common sense questions and answers\n\nQuestion: \nFactual answer:',
- 'prompt_gpt4chan': '-----\n--- 865467536\nInput text\n--- 865467537\n',
- 'stop_at_newline': True,
- 'chat_prompt_size': 2048,
- 'chat_prompt_size_min': 0,
- 'chat_prompt_size_max': 2048,
- 'preset_pygmalion': 'Pygmalion',
- 'name1_pygmalion': 'You',
- 'name2_pygmalion': 'Kawaii',
- 'context_pygmalion': "Kawaii's persona: Kawaii is a cheerful person who loves to make others smile. She is an optimist who loves to spread happiness and positivity wherever she goes.\n<START>",
- 'stop_at_newline_pygmalion': False,
- }
- if args.settings is not None and Path(args.settings).exists():
- new_settings = json.loads(open(Path(args.settings), 'r').read())
- for item in new_settings:
- settings[item] = new_settings[item]
- if args.flexgen:
- from flexgen.flex_opt import (Policy, OptLM, TorchDevice, TorchDisk, TorchMixedDevice, CompressionConfig, Env, Task, get_opt_config)
- if args.deepspeed:
- import deepspeed
- from transformers.deepspeed import HfDeepSpeedConfig, is_deepspeed_zero3_enabled
- from modules.deepspeed_parameters import generate_ds_config
- # Distributed setup
- local_rank = args.local_rank if args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
- world_size = int(os.getenv("WORLD_SIZE", "1"))
- torch.cuda.set_device(local_rank)
- deepspeed.init_distributed()
- ds_config = generate_ds_config(args.bf16, 1 * world_size, args.nvme_offload_dir)
- dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
- if args.picture and (args.cai_chat or args.chat):
- import modules.bot_picture as bot_picture
- def load_model(model_name):
- print(f"Loading {model_name}...")
- t0 = time.time()
- # Default settings
- if not (args.cpu or args.load_in_8bit or args.auto_devices or args.disk or args.gpu_memory is not None or args.cpu_memory is not None or args.deepspeed or args.flexgen):
- if any(size in model_name.lower() for size in ('13b', '20b', '30b')):
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True)
- else:
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if args.bf16 else torch.float16).cuda()
- # FlexGen
- elif args.flexgen:
- gpu = TorchDevice("cuda:0")
- cpu = TorchDevice("cpu")
- disk = TorchDisk(args.disk_cache_dir)
- env = Env(gpu=gpu, cpu=cpu, disk=disk, mixed=TorchMixedDevice([gpu, cpu, disk]))
- # Offloading policy
- policy = Policy(1, 1,
- args.percent[0], args.percent[1],
- args.percent[2], args.percent[3],
- args.percent[4], args.percent[5],
- overlap=True, sep_layer=True, pin_weight=True,
- cpu_cache_compute=False, attn_sparsity=1.0,
- compress_weight=args.compress_weight,
- comp_weight_config=CompressionConfig(
- num_bits=4, group_size=64,
- group_dim=0, symmetric=False),
- compress_cache=False,
- comp_cache_config=CompressionConfig(
- num_bits=4, group_size=64,
- group_dim=2, symmetric=False))
- opt_config = get_opt_config(f"facebook/{model_name}")
- model = OptLM(opt_config, env, "models", policy)
- model.init_all_weights()
- # DeepSpeed ZeRO-3
- elif args.deepspeed:
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), torch_dtype=torch.bfloat16 if args.bf16 else torch.float16)
- model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
- model.module.eval() # Inference
- print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
- # Custom
- else:
- command = "AutoModelForCausalLM.from_pretrained"
- params = ["low_cpu_mem_usage=True"]
- if not args.cpu and not torch.cuda.is_available():
- print("Warning: no GPU has been detected.\nFalling back to CPU mode.\n")
- args.cpu = True
- if args.cpu:
- params.append("low_cpu_mem_usage=True")
- params.append("torch_dtype=torch.float32")
- else:
- params.append("device_map='auto'")
- params.append("load_in_8bit=True" if args.load_in_8bit else "torch_dtype=torch.bfloat16" if args.bf16 else "torch_dtype=torch.float16")
- if args.gpu_memory:
- params.append(f"max_memory={{0: '{args.gpu_memory or '99'}GiB', 'cpu': '{args.cpu_memory or '99'}GiB'}}")
- elif not args.load_in_8bit:
- total_mem = (torch.cuda.get_device_properties(0).total_memory/(1024*1024))
- suggestion = round((total_mem-1000)/1000)*1000
- if total_mem-suggestion < 800:
- suggestion -= 1000
- suggestion = int(round(suggestion/1000))
- print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
- params.append(f"max_memory={{0: '{suggestion}GiB', 'cpu': '{args.cpu_memory or '99'}GiB'}}")
- if args.disk:
- params.append(f"offload_folder='{args.disk_cache_dir}'")
- command = f"{command}(Path(f'models/{model_name}'), {', '.join(set(params))})"
- model = eval(command)
- # Loading the tokenizer
- if model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path(f"models/gpt-j-6B/").exists():
- tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
- else:
- tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{model_name}/"))
- tokenizer.truncation_side = 'left'
- print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
- return model, tokenizer
- def load_soft_prompt(name):
- global soft_prompt, soft_prompt_tensor
- if name == 'None':
- soft_prompt = False
- soft_prompt_tensor = None
- else:
- with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
- zf.extract('tensor.npy')
- zf.extract('meta.json')
- j = json.loads(open('meta.json', 'r').read())
- print(f"\nLoading the softprompt \"{name}\".")
- for field in j:
- if field != 'name':
- if type(j[field]) is list:
- print(f"{field}: {', '.join(j[field])}")
- else:
- print(f"{field}: {j[field]}")
- print()
- tensor = np.load('tensor.npy')
- Path('tensor.npy').unlink()
- Path('meta.json').unlink()
- tensor = torch.Tensor(tensor).to(device=model.device, dtype=model.dtype)
- tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
- soft_prompt = True
- soft_prompt_tensor = tensor
- return name
- def upload_soft_prompt(file):
- with zipfile.ZipFile(io.BytesIO(file)) as zf:
- zf.extract('meta.json')
- j = json.loads(open('meta.json', 'r').read())
- name = j['name']
- Path('meta.json').unlink()
- with open(Path(f'softprompts/{name}.zip'), 'wb') as f:
- f.write(file)
- return name
- def load_model_wrapper(selected_model):
- global model_name, model, tokenizer
- if selected_model != model_name:
- model_name = selected_model
- model = tokenizer = None
- if not args.cpu:
- gc.collect()
- torch.cuda.empty_cache()
- model, tokenizer = load_model(model_name)
- return selected_model
- def load_preset_values(preset_menu, return_dict=False):
- generate_params = {
- 'do_sample': True,
- 'temperature': 1,
- 'top_p': 1,
- 'typical_p': 1,
- 'repetition_penalty': 1,
- 'top_k': 50,
- 'num_beams': 1,
- 'penalty_alpha': 0,
- 'min_length': 0,
- 'length_penalty': 1,
- 'no_repeat_ngram_size': 0,
- 'early_stopping': False,
- }
- with open(Path(f'presets/{preset_menu}.txt'), 'r') as infile:
- preset = infile.read()
- for i in preset.splitlines():
- i = i.rstrip(',').strip().split('=')
- if len(i) == 2 and i[0].strip() != 'tokens':
- generate_params[i[0].strip()] = eval(i[1].strip())
- generate_params['temperature'] = min(1.99, generate_params['temperature'])
- if return_dict:
- return generate_params
- else:
- return generate_params['do_sample'], generate_params['temperature'], generate_params['top_p'], generate_params['typical_p'], generate_params['repetition_penalty'], generate_params['top_k'], generate_params['min_length'], generate_params['no_repeat_ngram_size'], generate_params['num_beams'], generate_params['penalty_alpha'], generate_params['length_penalty'], generate_params['early_stopping']
- # Removes empty replies from gpt4chan outputs
- def fix_gpt4chan(s):
- for i in range(10):
- s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
- s = re.sub("--- [0-9]*\n *\n---", "---", s)
- s = re.sub("--- [0-9]*\n\n\n---", "---", s)
- return s
- # Fix the LaTeX equations in galactica
- def fix_galactica(s):
- s = s.replace(r'\[', r'$')
- s = s.replace(r'\]', r'$')
- s = s.replace(r'\(', r'$')
- s = s.replace(r'\)', r'$')
- s = s.replace(r'$$', r'$')
- s = re.sub(r'\n', r'\n\n', s)
- s = re.sub(r"\n{3,}", "\n\n", s)
- return s
- def get_max_prompt_length(tokens):
- global soft_prompt, soft_prompt_tensor
- max_length = 2048-tokens
- if soft_prompt:
- max_length -= soft_prompt_tensor.shape[1]
- return max_length
- def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
- input_ids = tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
- if args.cpu or args.flexgen:
- return input_ids
- elif args.deepspeed:
- return input_ids.to(device=local_rank)
- else:
- return input_ids.cuda()
- def decode(output_ids):
- reply = tokenizer.decode(output_ids, skip_special_tokens=True)
- reply = reply.replace(r'<|endoftext|>', '')
- return reply
- def formatted_outputs(reply, model_name):
- if not (args.chat or args.cai_chat):
- if model_name.lower().startswith('galactica'):
- reply = fix_galactica(reply)
- return reply, reply, generate_basic_html(reply)
- elif model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')):
- reply = fix_gpt4chan(reply)
- return reply, 'Only applicable for GALACTICA models.', generate_4chan_html(reply)
- else:
- return reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply)
- else:
- return reply
- def generate_softprompt_input_tensors(input_ids):
- inputs_embeds = model.transformer.wte(input_ids)
- inputs_embeds = torch.cat((soft_prompt_tensor, inputs_embeds), dim=1)
- filler_input_ids = torch.zeros((1, inputs_embeds.shape[1]), dtype=input_ids.dtype).to(model.device)
- filler_input_ids += model.config.bos_token_id # setting dummy input_ids to bos tokens
- return inputs_embeds, filler_input_ids
- def generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None):
- global model_name, model, tokenizer, soft_prompt, soft_prompt_tensor
- original_question = question
- if not (args.chat or args.cai_chat):
- question = apply_extensions(question, "input")
- if args.verbose:
- print(f"\n\n{question}\n--------------------\n")
- input_ids = encode(question, tokens)
- cuda = "" if (args.cpu or args.deepspeed or args.flexgen) else ".cuda()"
- if not args.flexgen:
- n = tokenizer.eos_token_id if eos_token is None else tokenizer.encode(eos_token, return_tensors='pt')[0][-1]
- else:
- n = tokenizer(eos_token).input_ids[0] if eos_token else None
- if stopping_string is not None:
- # The stopping_criteria code below was copied from
- # https://github.com/PygmalionAI/gradio-ui/blob/master/src/model.py
- t = encode(stopping_string, 0, add_special_tokens=False)
- stopping_criteria_list = transformers.StoppingCriteriaList([
- _SentinelTokenStoppingCriteria(
- sentinel_token_ids=t,
- starting_idx=len(input_ids[0])
- )
- ])
- else:
- stopping_criteria_list = None
- if not args.flexgen:
- generate_params = [
- f"eos_token_id={n}",
- f"stopping_criteria=stopping_criteria_list",
- f"do_sample={do_sample}",
- f"temperature={temperature}",
- f"top_p={top_p}",
- f"typical_p={typical_p}",
- f"repetition_penalty={repetition_penalty}",
- f"top_k={top_k}",
- f"min_length={min_length if args.no_stream else 0}",
- f"no_repeat_ngram_size={no_repeat_ngram_size}",
- f"num_beams={num_beams}",
- f"penalty_alpha={penalty_alpha}",
- f"length_penalty={length_penalty}",
- f"early_stopping={early_stopping}",
- ]
- else:
- generate_params = [
- f"do_sample={do_sample}",
- f"temperature={temperature}",
- f"stop={n}",
- ]
- if args.deepspeed:
- generate_params.append("synced_gpus=True")
- if args.no_stream:
- generate_params.append(f"max_new_tokens=tokens")
- else:
- generate_params.append(f"max_new_tokens=8")
- if soft_prompt:
- inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
- generate_params.insert(0, "inputs_embeds=inputs_embeds")
- generate_params.insert(0, "filler_input_ids")
- else:
- generate_params.insert(0, "input_ids")
- # Generate the entire reply at once
- if args.no_stream:
- t0 = time.time()
- with torch.no_grad():
- output = eval(f"model.generate({', '.join(generate_params)}){cuda}")[0]
- if soft_prompt:
- output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
- reply = decode(output)
- if not (args.chat or args.cai_chat):
- reply = original_question + apply_extensions(reply[len(question):], "output")
- yield formatted_outputs(reply, model_name)
- t1 = time.time()
- print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0)/8:.2f} it/s, {len(output)-len(input_ids[0])} tokens)")
- # Generate the reply 8 tokens at a time
- else:
- yield formatted_outputs(original_question, model_name)
- for i in tqdm(range(tokens//8+1)):
- with torch.no_grad():
- output = eval(f"model.generate({', '.join(generate_params)}){cuda}")[0]
- if soft_prompt:
- output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
- reply = decode(output)
- if not (args.chat or args.cai_chat):
- reply = original_question + apply_extensions(reply[len(question):], "output")
- yield formatted_outputs(reply, model_name)
- if not args.flexgen:
- input_ids = torch.reshape(output, (1, output.shape[0]))
- else:
- input_ids = np.reshape(output, (1, output.shape[0]))
- if soft_prompt:
- inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
- if output[-1] == n:
- break
- def apply_extensions(text, typ):
- global available_extensions, extension_state
- for ext in sorted(extension_state, key=lambda x : extension_state[x][1]):
- if extension_state[ext][0] == True:
- ext_string = f"extensions.{ext}.script"
- if typ == "input" and hasattr(eval(ext_string), "input_modifier"):
- text = eval(f"{ext_string}.input_modifier(text)")
- elif typ == "output" and hasattr(eval(ext_string), "output_modifier"):
- text = eval(f"{ext_string}.output_modifier(text)")
- elif typ == "bot_prefix" and hasattr(eval(ext_string), "bot_prefix_modifier"):
- text = eval(f"{ext_string}.bot_prefix_modifier(text)")
- return text
- def update_extensions_parameters(*kwargs):
- i = 0
- for ext in sorted(extension_state, key=lambda x : extension_state[x][1]):
- if extension_state[ext][0] == True:
- params = eval(f"extensions.{ext}.script.params")
- for param in params:
- if len(kwargs) >= i+1:
- params[param] = eval(f"kwargs[{i}]")
- i += 1
- def get_available_models():
- return sorted([item.name for item in list(Path('models/').glob('*')) if not item.name.endswith(('.txt', '-np'))], key=str.lower)
- def get_available_presets():
- return sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('presets').glob('*.txt'))), key=str.lower)
- def get_available_characters():
- return ["None"] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('characters').glob('*.json'))), key=str.lower)
- def get_available_extensions():
- return sorted(set(map(lambda x : x.parts[1], Path('extensions').glob('*/script.py'))), key=str.lower)
- def get_available_softprompts():
- return ["None"] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('softprompts').glob('*.zip'))), key=str.lower)
- def create_extensions_block():
- extensions_ui_elements = []
- default_values = []
- if not (args.chat or args.cai_chat):
- gr.Markdown('## Extensions parameters')
- for ext in sorted(extension_state, key=lambda x : extension_state[x][1]):
- if extension_state[ext][0] == True:
- params = eval(f"extensions.{ext}.script.params")
- for param in params:
- _id = f"{ext}-{param}"
- default_value = settings[_id] if _id in settings else params[param]
- default_values.append(default_value)
- if type(params[param]) == str:
- extensions_ui_elements.append(gr.Textbox(value=default_value, label=f"{ext}-{param}"))
- elif type(params[param]) in [int, float]:
- extensions_ui_elements.append(gr.Number(value=default_value, label=f"{ext}-{param}"))
- elif type(params[param]) == bool:
- extensions_ui_elements.append(gr.Checkbox(value=default_value, label=f"{ext}-{param}"))
- update_extensions_parameters(*default_values)
- btn_extensions = gr.Button("Apply")
- btn_extensions.click(update_extensions_parameters, [*extensions_ui_elements], [])
- def create_settings_menus():
- generate_params = load_preset_values(settings[f'preset{suffix}'] if not args.flexgen else 'Naive', return_dict=True)
- with gr.Row():
- with gr.Column():
- with gr.Row():
- model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
- create_refresh_button(model_menu, lambda : None, lambda : {"choices": get_available_models()}, "refresh-button")
- with gr.Column():
- with gr.Row():
- preset_menu = gr.Dropdown(choices=available_presets, value=settings[f'preset{suffix}'] if not args.flexgen else 'Naive', label='Generation parameters preset')
- create_refresh_button(preset_menu, lambda : None, lambda : {"choices": get_available_presets()}, "refresh-button")
- with gr.Accordion("Custom generation parameters", open=False, elem_id="accordion"):
- with gr.Row():
- do_sample = gr.Checkbox(value=generate_params['do_sample'], label="do_sample")
- temperature = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label="temperature")
- with gr.Row():
- top_k = gr.Slider(0,200,value=generate_params['top_k'],step=1,label="top_k")
- top_p = gr.Slider(0.0,1.0,value=generate_params['top_p'],step=0.01,label="top_p")
- with gr.Row():
- repetition_penalty = gr.Slider(1.0,4.99,value=generate_params['repetition_penalty'],step=0.01,label="repetition_penalty")
- no_repeat_ngram_size = gr.Slider(0, 20, step=1, value=generate_params["no_repeat_ngram_size"], label="no_repeat_ngram_size")
- with gr.Row():
- typical_p = gr.Slider(0.0,1.0,value=generate_params['typical_p'],step=0.01,label="typical_p")
- min_length = gr.Slider(0, 2000, step=1, value=generate_params["min_length"] if args.no_stream else 0, label="min_length", interactive=args.no_stream)
- gr.Markdown("Contrastive search:")
- penalty_alpha = gr.Slider(0, 5, value=generate_params["penalty_alpha"], label="penalty_alpha")
- gr.Markdown("Beam search (uses a lot of VRAM):")
- with gr.Row():
- num_beams = gr.Slider(1, 20, step=1, value=generate_params["num_beams"], label="num_beams")
- length_penalty = gr.Slider(-5, 5, value=generate_params["length_penalty"], label="length_penalty")
- early_stopping = gr.Checkbox(value=generate_params["early_stopping"], label="early_stopping")
- with gr.Accordion("Soft prompt", open=False, elem_id="accordion"):
- with gr.Row():
- softprompts_menu = gr.Dropdown(choices=available_softprompts, value="None", label='Soft prompt')
- create_refresh_button(softprompts_menu, lambda : None, lambda : {"choices": get_available_softprompts()}, "refresh-button")
- gr.Markdown('Upload a soft prompt (.zip format):')
- with gr.Row():
- upload_softprompt = gr.File(type='binary', file_types=[".zip"])
- model_menu.change(load_model_wrapper, [model_menu], [model_menu], show_progress=True)
- preset_menu.change(load_preset_values, [preset_menu], [do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping])
- softprompts_menu.change(load_soft_prompt, [softprompts_menu], [softprompts_menu], show_progress=True)
- upload_softprompt.upload(upload_soft_prompt, [upload_softprompt], [softprompts_menu])
- return preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping
- # This gets the new line characters right.
- def clean_chat_message(text):
- text = text.replace('\n', '\n\n')
- text = re.sub(r"\n{3,}", "\n\n", text)
- text = text.strip()
- return text
- def generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size, impersonate=False):
- global soft_prompt, soft_prompt_tensor
- text = clean_chat_message(text)
- rows = [f"{context.strip()}\n"]
- i = len(history['internal'])-1
- count = 0
- if soft_prompt:
- chat_prompt_size -= soft_prompt_tensor.shape[1]
- max_length = min(get_max_prompt_length(tokens), chat_prompt_size)
- while i >= 0 and len(encode(''.join(rows), tokens)[0]) < max_length:
- rows.insert(1, f"{name2}: {history['internal'][i][1].strip()}\n")
- count += 1
- if not (history['internal'][i][0] == '<|BEGIN-VISIBLE-CHAT|>'):
- rows.insert(1, f"{name1}: {history['internal'][i][0].strip()}\n")
- count += 1
- i -= 1
- if not impersonate:
- rows.append(f"{name1}: {text}\n")
- rows.append(apply_extensions(f"{name2}:", "bot_prefix"))
- limit = 3
- else:
- rows.append(f"{name1}:")
- limit = 2
- while len(rows) > limit and len(encode(''.join(rows), tokens)[0]) >= max_length:
- rows.pop(1)
- rows.pop(1)
- question = ''.join(rows)
- return question
- def extract_message_from_reply(question, reply, current, other, check, extensions=False):
- next_character_found = False
- substring_found = False
- previous_idx = [m.start() for m in re.finditer(f"(^|\n){re.escape(current)}:", question)]
- idx = [m.start() for m in re.finditer(f"(^|\n){re.escape(current)}:", reply)]
- idx = idx[len(previous_idx)-1]
- if extensions:
- reply = reply[idx + 1 + len(apply_extensions(f"{current}:", "bot_prefix")):]
- else:
- reply = reply[idx + 1 + len(f"{current}:"):]
- if check:
- reply = reply.split('\n')[0].strip()
- else:
- idx = reply.find(f"\n{other}:")
- if idx != -1:
- reply = reply[:idx]
- next_character_found = True
- reply = clean_chat_message(reply)
- # Detect if something like "\nYo" is generated just before
- # "\nYou:" is completed
- tmp = f"\n{other}:"
- for j in range(1, len(tmp)):
- if reply[-j:] == tmp[:j]:
- substring_found = True
- return reply, next_character_found, substring_found
- def generate_chat_picture(picture, name1, name2):
- text = f'*{name1} sends {name2} a picture that contains the following: "{bot_picture.caption_image(picture)}"*'
- buffer = BytesIO()
- picture.save(buffer, format="JPEG")
- img_str = base64.b64encode(buffer.getvalue()).decode('utf-8')
- visible_text = f'<img src="data:image/jpeg;base64,{img_str}">'
- return text, visible_text
- def stop_everything_event():
- global stop_everything
- stop_everything = True
- def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
- global stop_everything
- stop_everything = False
- if 'pygmalion' in model_name.lower():
- name1 = "You"
- if args.picture and picture is not None:
- text, visible_text = generate_chat_picture(picture, name1, name2)
- else:
- visible_text = text
- if args.chat:
- visible_text = visible_text.replace('\n', '<br>')
- text = apply_extensions(text, "input")
- question = generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size)
- eos_token = '\n' if check else None
- first = True
- for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):
- reply, next_character_found, substring_found = extract_message_from_reply(question, reply, name2, name1, check, extensions=True)
- visible_reply = apply_extensions(reply, "output")
- if args.chat:
- visible_reply = visible_reply.replace('\n', '<br>')
- # We need this global variable to handle the Stop event,
- # otherwise gradio gets confused
- if stop_everything:
- return history['visible']
- if first:
- first = False
- history['internal'].append(['', ''])
- history['visible'].append(['', ''])
- history['internal'][-1] = [text, reply]
- history['visible'][-1] = [visible_text, visible_reply]
- if not substring_found:
- yield history['visible']
- if next_character_found:
- break
- yield history['visible']
- def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
- if 'pygmalion' in model_name.lower():
- name1 = "You"
- question = generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size, impersonate=True)
- eos_token = '\n' if check else None
- for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
- reply, next_character_found, substring_found = extract_message_from_reply(question, reply, name1, name2, check, extensions=False)
- if not substring_found:
- yield reply
- if next_character_found:
- break
- yield reply
- def cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
- for _history in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture):
- yield generate_chat_html(_history, name1, name2, character)
- def regenerate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
- if character is not None and len(history['visible']) == 1:
- if args.cai_chat:
- yield generate_chat_html(history['visible'], name1, name2, character)
- else:
- yield history['visible']
- else:
- last_visible = history['visible'].pop()
- last_internal = history['internal'].pop()
- for _history in chatbot_wrapper(last_internal[0], tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture):
- if args.cai_chat:
- history['visible'][-1] = [last_visible[0], _history[-1][1]]
- yield generate_chat_html(history['visible'], name1, name2, character)
- else:
- history['visible'][-1] = (last_visible[0], _history[-1][1])
- yield history['visible']
- def remove_last_message(name1, name2):
- if not history['internal'][-1][0] == '<|BEGIN-VISIBLE-CHAT|>':
- last = history['visible'].pop()
- history['internal'].pop()
- else:
- last = ['', '']
- if args.cai_chat:
- return generate_chat_html(history['visible'], name1, name2, character), last[0]
- else:
- return history['visible'], last[0]
- def send_last_reply_to_input():
- if len(history['internal']) > 0:
- return history['internal'][-1][1]
- else:
- return ''
- def replace_last_reply(text, name1, name2):
- if len(history['visible']) > 0:
- if args.cai_chat:
- history['visible'][-1][1] = text
- else:
- history['visible'][-1] = (history['visible'][-1][0], text)
- history['internal'][-1][1] = apply_extensions(text, "input")
- if args.cai_chat:
- return generate_chat_html(history['visible'], name1, name2, character)
- else:
- return history['visible']
- def clear_html():
- return generate_chat_html([], "", "", character)
- def clear_chat_log(_character, name1, name2):
- global history
- if _character != 'None':
- for i in range(len(history['internal'])):
- if '<|BEGIN-VISIBLE-CHAT|>' in history['internal'][i][0]:
- history['visible'] = [['', history['internal'][i][1]]]
- history['internal'] = history['internal'][:i+1]
- break
- else:
- history['internal'] = []
- history['visible'] = []
- if args.cai_chat:
- return generate_chat_html(history['visible'], name1, name2, character)
- else:
- return history['visible']
- def redraw_html(name1, name2):
- global history
- return generate_chat_html(history['visible'], name1, name2, character)
- def tokenize_dialogue(dialogue, name1, name2):
- _history = []
- dialogue = re.sub('<START>', '', dialogue)
- dialogue = re.sub('<start>', '', dialogue)
- dialogue = re.sub('(\n|^)[Aa]non:', '\\1You:', dialogue)
- dialogue = re.sub('(\n|^)\[CHARACTER\]:', f'\\g<1>{name2}:', dialogue)
- idx = [m.start() for m in re.finditer(f"(^|\n)({re.escape(name1)}|{re.escape(name2)}):", dialogue)]
- if len(idx) == 0:
- return _history
- messages = []
- for i in range(len(idx)-1):
- messages.append(dialogue[idx[i]:idx[i+1]].strip())
- messages.append(dialogue[idx[-1]:].strip())
- entry = ['', '']
- for i in messages:
- if i.startswith(f'{name1}:'):
- entry[0] = i[len(f'{name1}:'):].strip()
- elif i.startswith(f'{name2}:'):
- entry[1] = i[len(f'{name2}:'):].strip()
- if not (len(entry[0]) == 0 and len(entry[1]) == 0):
- _history.append(entry)
- entry = ['', '']
- print(f"\033[1;32;1m\nDialogue tokenized to:\033[0;37;0m\n", end='')
- for row in _history:
- for column in row:
- print("\n")
- for line in column.strip().split('\n'):
- print("| "+line+"\n")
- print("|\n")
- print("------------------------------")
- return _history
- def save_history(timestamp=True):
- if timestamp:
- fname = f"{character or ''}{'_' if character else ''}{datetime.now().strftime('%Y%m%d-%H%M%S')}.json"
- else:
- fname = f"{character or ''}{'_' if character else ''}persistent.json"
- if not Path('logs').exists():
- Path('logs').mkdir()
- with open(Path(f'logs/{fname}'), 'w') as f:
- f.write(json.dumps({'data': history['internal'], 'data_visible': history['visible']}, indent=2))
- return Path(f'logs/{fname}')
- def load_history(file, name1, name2):
- global history
- file = file.decode('utf-8')
- try:
- j = json.loads(file)
- if 'data' in j:
- history['internal'] = j['data']
- if 'data_visible' in j:
- history['visible'] = j['data_visible']
- else:
- history['visible'] = copy.deepcopy(history['internal'])
- # Compatibility with Pygmalion AI's official web UI
- elif 'chat' in j:
- history['internal'] = [':'.join(x.split(':')[1:]).strip() for x in j['chat']]
- if len(j['chat']) > 0 and j['chat'][0].startswith(f'{name2}:'):
- history['internal'] = [['<|BEGIN-VISIBLE-CHAT|>', history['internal'][0]]] + [[history['internal'][i], history['internal'][i+1]] for i in range(1, len(history['internal'])-1, 2)]
- history['visible'] = copy.deepcopy(history['internal'])
- history['visible'][0][0] = ''
- else:
- history['internal'] = [[history['internal'][i], history['internal'][i+1]] for i in range(0, len(history['internal'])-1, 2)]
- history['visible'] = copy.deepcopy(history['internal'])
- except:
- history['internal'] = tokenize_dialogue(file, name1, name2)
- history['visible'] = copy.deepcopy(history['internal'])
- def load_character(_character, name1, name2):
- global history, character
- context = ""
- history['internal'] = []
- history['visible'] = []
- if _character != 'None':
- character = _character
- data = json.loads(open(Path(f'characters/{_character}.json'), 'r').read())
- name2 = data['char_name']
- if 'char_persona' in data and data['char_persona'] != '':
- context += f"{data['char_name']}'s Persona: {data['char_persona']}\n"
- if 'world_scenario' in data and data['world_scenario'] != '':
- context += f"Scenario: {data['world_scenario']}\n"
- context = f"{context.strip()}\n<START>\n"
- if 'example_dialogue' in data and data['example_dialogue'] != '':
- history['internal'] = tokenize_dialogue(data['example_dialogue'], name1, name2)
- if 'char_greeting' in data and len(data['char_greeting'].strip()) > 0:
- history['internal'] += [['<|BEGIN-VISIBLE-CHAT|>', data['char_greeting']]]
- history['visible'] += [['', apply_extensions(data['char_greeting'], "output")]]
- else:
- history['internal'] += [['<|BEGIN-VISIBLE-CHAT|>', "Hello there!"]]
- history['visible'] += [['', "Hello there!"]]
- else:
- character = None
- context = settings['context_pygmalion']
- name2 = settings['name2_pygmalion']
- if Path(f'logs/{character}_persistent.json').exists():
- load_history(open(Path(f'logs/{character}_persistent.json'), 'rb').read(), name1, name2)
- if args.cai_chat:
- return name2, context, generate_chat_html(history['visible'], name1, name2, character)
- else:
- return name2, context, history['visible']
- def upload_character(json_file, img, tavern=False):
- json_file = json_file if type(json_file) == str else json_file.decode('utf-8')
- data = json.loads(json_file)
- outfile_name = data["char_name"]
- i = 1
- while Path(f'characters/{outfile_name}.json').exists():
- outfile_name = f'{data["char_name"]}_{i:03d}'
- i += 1
- if tavern:
- outfile_name = f'TavernAI-{outfile_name}'
- with open(Path(f'characters/{outfile_name}.json'), 'w') as f:
- f.write(json_file)
- if img is not None:
- img = Image.open(io.BytesIO(img))
- img.save(Path(f'characters/{outfile_name}.png'))
- print(f'New character saved to "characters/{outfile_name}.json".')
- return outfile_name
- def upload_tavern_character(img, name1, name2):
- _img = Image.open(io.BytesIO(img))
- _img.getexif()
- decoded_string = base64.b64decode(_img.info['chara'])
- _json = json.loads(decoded_string)
- _json = {"char_name": _json['name'], "char_persona": _json['description'], "char_greeting": _json["first_mes"], "example_dialogue": _json['mes_example'], "world_scenario": _json['scenario']}
- _json['example_dialogue'] = _json['example_dialogue'].replace('{{user}}', name1).replace('{{char}}', _json['char_name'])
- return upload_character(json.dumps(_json), img, tavern=True)
- def upload_your_profile_picture(img):
- img = Image.open(io.BytesIO(img))
- img.save(Path(f'img_me.png'))
- print(f'Profile picture saved to "img_me.png"')
- # Global variables
- available_models = get_available_models()
- available_presets = get_available_presets()
- available_characters = get_available_characters()
- available_extensions = get_available_extensions()
- available_softprompts = get_available_softprompts()
- extension_state = {}
- if args.extensions is not None:
- for i,ext in enumerate(args.extensions.split(',')):
- if ext in available_extensions:
- print(f'Loading the extension "{ext}"... ', end='')
- ext_string = f"extensions.{ext}.script"
- exec(f"import {ext_string}")
- extension_state[ext] = [True, i]
- print(f'Ok.')
- # Choosing the default model
- if args.model is not None:
- model_name = args.model
- else:
- if len(available_models) == 0:
- print("No models are available! Please download at least one.")
- sys.exit(0)
- elif len(available_models) == 1:
- i = 0
- else:
- print("The following models are available:\n")
- for i,model in enumerate(available_models):
- print(f"{i+1}. {model}")
- print(f"\nWhich one do you want to load? 1-{len(available_models)}\n")
- i = int(input())-1
- print()
- model_name = available_models[i]
- model, tokenizer = load_model(model_name)
- loaded_preset = None
- soft_prompt_tensor = None
- soft_prompt = False
- stop_everything = False
- # UI settings
- if model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')):
- default_text = settings['prompt_gpt4chan']
- elif re.match('(rosey|chip|joi)_.*_instruct.*', model_name.lower()) is not None:
- default_text = 'User: \n'
- else:
- default_text = settings['prompt']
- description = f"\n\n# Text generation lab\nGenerate text using Large Language Models.\n"
- suffix = '_pygmalion' if 'pygmalion' in model_name.lower() else ''
- buttons = {}
- gen_events = []
- history = {'internal': [], 'visible': []}
- character = None
- if args.chat or args.cai_chat:
- if Path(f'logs/persistent.json').exists():
- load_history(open(Path(f'logs/persistent.json'), 'rb').read(), settings[f'name1{suffix}'], settings[f'name2{suffix}'])
- with gr.Blocks(css=css+chat_css, analytics_enabled=False) as interface:
- if args.cai_chat:
- display = gr.HTML(value=generate_chat_html(history['visible'], settings[f'name1{suffix}'], settings[f'name2{suffix}'], character))
- else:
- display = gr.Chatbot(value=history['visible'])
- textbox = gr.Textbox(label='Input')
- with gr.Row():
- buttons["Stop"] = gr.Button("Stop")
- buttons["Generate"] = gr.Button("Generate")
- buttons["Regenerate"] = gr.Button("Regenerate")
- with gr.Row():
- buttons["Impersonate"] = gr.Button("Impersonate")
- buttons["Remove last"] = gr.Button("Remove last")
- buttons["Clear history"] = gr.Button("Clear history")
- with gr.Row():
- buttons["Send last reply to input"] = gr.Button("Send last reply to input")
- buttons["Replace last reply"] = gr.Button("Replace last reply")
- if args.picture:
- with gr.Row():
- picture_select = gr.Image(label="Send a picture", type='pil')
- with gr.Tab("Chat settings"):
- name1 = gr.Textbox(value=settings[f'name1{suffix}'], lines=1, label='Your name')
- name2 = gr.Textbox(value=settings[f'name2{suffix}'], lines=1, label='Bot\'s name')
- context = gr.Textbox(value=settings[f'context{suffix}'], lines=2, label='Context')
- with gr.Row():
- character_menu = gr.Dropdown(choices=available_characters, value="None", label='Character')
- create_refresh_button(character_menu, lambda : None, lambda : {"choices": get_available_characters()}, "refresh-button")
- with gr.Row():
- check = gr.Checkbox(value=settings[f'stop_at_newline{suffix}'], label='Stop generating at new line character?')
- with gr.Row():
- with gr.Tab('Chat history'):
- with gr.Row():
- with gr.Column():
- gr.Markdown('Upload')
- upload_chat_history = gr.File(type='binary', file_types=[".json", ".txt"])
- with gr.Column():
- gr.Markdown('Download')
- download = gr.File()
- buttons["Download"] = gr.Button(value="Click me")
- with gr.Tab('Upload character'):
- with gr.Row():
- with gr.Column():
- gr.Markdown('1. Select the JSON file')
- upload_char = gr.File(type='binary', file_types=[".json"])
- with gr.Column():
- gr.Markdown('2. Select your character\'s profile picture (optional)')
- upload_img = gr.File(type='binary', file_types=["image"])
- buttons["Upload character"] = gr.Button(value="Submit")
- with gr.Tab('Upload your profile picture'):
- upload_img_me = gr.File(type='binary', file_types=["image"])
- with gr.Tab('Upload TavernAI Character Card'):
- upload_img_tavern = gr.File(type='binary', file_types=["image"])
- with gr.Tab("Generation settings"):
- with gr.Row():
- with gr.Column():
- max_new_tokens = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
- with gr.Column():
- chat_prompt_size_slider = gr.Slider(minimum=settings['chat_prompt_size_min'], maximum=settings['chat_prompt_size_max'], step=1, label='Maximum prompt size in tokens', value=settings['chat_prompt_size'])
- preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping = create_settings_menus()
- if args.extensions is not None:
- with gr.Tab("Extensions"):
- create_extensions_block()
- input_params = [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size_slider]
- if args.picture:
- input_params.append(picture_select)
- function_call = "cai_chatbot_wrapper" if args.cai_chat else "chatbot_wrapper"
- gen_events.append(buttons["Generate"].click(eval(function_call), input_params, display, show_progress=args.no_stream, api_name="textgen"))
- gen_events.append(textbox.submit(eval(function_call), input_params, display, show_progress=args.no_stream))
- if args.picture:
- picture_select.upload(eval(function_call), input_params, display, show_progress=args.no_stream)
- gen_events.append(buttons["Regenerate"].click(regenerate_wrapper, input_params, display, show_progress=args.no_stream))
- gen_events.append(buttons["Impersonate"].click(impersonate_wrapper, input_params, textbox, show_progress=args.no_stream))
- buttons["Stop"].click(stop_everything_event, [], [], cancels=gen_events)
- buttons["Send last reply to input"].click(send_last_reply_to_input, [], textbox, show_progress=args.no_stream)
- buttons["Replace last reply"].click(replace_last_reply, [textbox, name1, name2], display, show_progress=args.no_stream)
- buttons["Clear history"].click(clear_chat_log, [character_menu, name1, name2], display)
- buttons["Remove last"].click(remove_last_message, [name1, name2], [display, textbox], show_progress=False)
- buttons["Download"].click(save_history, inputs=[], outputs=[download])
- buttons["Upload character"].click(upload_character, [upload_char, upload_img], [character_menu])
- # Clearing stuff and saving the history
- for i in ["Generate", "Regenerate", "Replace last reply"]:
- buttons[i].click(lambda x: "", textbox, textbox, show_progress=False)
- buttons[i].click(lambda : save_history(timestamp=False), [], [], show_progress=False)
- buttons["Clear history"].click(lambda : save_history(timestamp=False), [], [], show_progress=False)
- textbox.submit(lambda x: "", textbox, textbox, show_progress=False)
- textbox.submit(lambda : save_history(timestamp=False), [], [], show_progress=False)
- character_menu.change(load_character, [character_menu, name1, name2], [name2, context, display])
- upload_chat_history.upload(load_history, [upload_chat_history, name1, name2], [])
- upload_img_tavern.upload(upload_tavern_character, [upload_img_tavern, name1, name2], [character_menu])
- upload_img_me.upload(upload_your_profile_picture, [upload_img_me], [])
- if args.picture:
- picture_select.upload(lambda : None, [], [picture_select], show_progress=False)
- if args.cai_chat:
- upload_chat_history.upload(redraw_html, [name1, name2], [display])
- upload_img_me.upload(redraw_html, [name1, name2], [display])
- else:
- upload_chat_history.upload(lambda : history['visible'], [], [display])
- upload_img_me.upload(lambda : history['visible'], [], [display])
- elif args.notebook:
- with gr.Blocks(css=css, analytics_enabled=False) as interface:
- gr.Markdown(description)
- with gr.Tab('Raw'):
- textbox = gr.Textbox(value=default_text, lines=23)
- with gr.Tab('Markdown'):
- markdown = gr.Markdown()
- with gr.Tab('HTML'):
- html = gr.HTML()
- buttons["Generate"] = gr.Button("Generate")
- buttons["Stop"] = gr.Button("Stop")
- max_new_tokens = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
- preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping = create_settings_menus()
- if args.extensions is not None:
- create_extensions_block()
- gen_events.append(buttons["Generate"].click(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [textbox, markdown, html], show_progress=args.no_stream, api_name="textgen"))
- gen_events.append(textbox.submit(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [textbox, markdown, html], show_progress=args.no_stream))
- buttons["Stop"].click(None, None, None, cancels=gen_events)
- else:
- with gr.Blocks(css=css, analytics_enabled=False) as interface:
- gr.Markdown(description)
- with gr.Row():
- with gr.Column():
- textbox = gr.Textbox(value=default_text, lines=15, label='Input')
- max_new_tokens = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
- buttons["Generate"] = gr.Button("Generate")
- with gr.Row():
- with gr.Column():
- buttons["Continue"] = gr.Button("Continue")
- with gr.Column():
- buttons["Stop"] = gr.Button("Stop")
- preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping = create_settings_menus()
- if args.extensions is not None:
- create_extensions_block()
- with gr.Column():
- with gr.Tab('Raw'):
- output_textbox = gr.Textbox(lines=15, label='Output')
- with gr.Tab('Markdown'):
- markdown = gr.Markdown()
- with gr.Tab('HTML'):
- html = gr.HTML()
- gen_events.append(buttons["Generate"].click(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [output_textbox, markdown, html], show_progress=args.no_stream, api_name="textgen"))
- gen_events.append(textbox.submit(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [output_textbox, markdown, html], show_progress=args.no_stream))
- gen_events.append(buttons["Continue"].click(generate_reply, [output_textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [output_textbox, markdown, html], show_progress=args.no_stream))
- buttons["Stop"].click(None, None, None, cancels=gen_events)
- interface.queue()
- if args.listen:
- interface.launch(prevent_thread_lock=True, share=args.share, server_name="0.0.0.0", server_port=args.listen_port)
- else:
- interface.launch(prevent_thread_lock=True, share=args.share, server_port=args.listen_port)
- # I think that I will need this later
- while True:
- time.sleep(0.5)
|