server.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. import re
  2. import time
  3. import glob
  4. from sys import exit
  5. import torch
  6. import argparse
  7. import json
  8. from pathlib import Path
  9. import gradio as gr
  10. import transformers
  11. from html_generator import *
  12. from transformers import AutoTokenizer, AutoModelForCausalLM
  13. import warnings
  14. transformers.logging.set_verbosity_error()
  15. parser = argparse.ArgumentParser()
  16. parser.add_argument('--model', type=str, help='Name of the model to load by default.')
  17. parser.add_argument('--notebook', action='store_true', help='Launch the webui in notebook mode, where the output is written to the same text box as the input.')
  18. parser.add_argument('--chat', action='store_true', help='Launch the webui in chat mode.')
  19. parser.add_argument('--cai-chat', action='store_true', help='Launch the webui in chat mode with a style similar to Character.AI\'s. If the file profile.png or profile.jpg exists in the same folder as server.py, this image will be used as the bot\'s profile picture.')
  20. parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
  21. parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
  22. parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.')
  23. parser.add_argument('--no-listen', action='store_true', help='Make the webui unreachable from your local network.')
  24. parser.add_argument('--settings-file', type=str, help='Load default interface settings from this json file. See settings-template.json for an example.')
  25. args = parser.parse_args()
  26. loaded_preset = None
  27. available_models = sorted(set(map(lambda x : str(x.name).replace('.pt', ''), list(Path('models/').glob('*'))+list(Path('torch-dumps/').glob('*')))))
  28. available_models = [item for item in available_models if not item.endswith('.txt')]
  29. available_models = sorted(available_models, key=str.lower)
  30. available_presets = sorted(set(map(lambda x : str(x.name).split('.')[0], list(Path('presets').glob('*.txt')))))
  31. settings = {
  32. 'max_new_tokens': 200,
  33. 'max_new_tokens_min': 1,
  34. 'max_new_tokens_max': 2000,
  35. 'preset': 'NovelAI-Sphinx Moth',
  36. 'name1': 'Person 1',
  37. 'name2': 'Person 2',
  38. 'name1_pygmalion': 'You',
  39. 'name2_pygmalion': 'Kawaii',
  40. 'context': 'This is a conversation between two people.',
  41. 'context_pygmalion': 'This is a conversation between two people.\n<START>',
  42. 'prompt': 'Common sense questions and answers\n\nQuestion: \nFactual answer:',
  43. 'prompt_gpt4chan': '-----\n--- 865467536\nInput text\n--- 865467537\n',
  44. 'stop_at_newline': True,
  45. }
  46. if args.settings_file is not None and Path(args.settings_file).exists():
  47. with open(Path(args.settings_file), 'r') as f:
  48. new_settings = json.load(f)
  49. for i in new_settings:
  50. if i in settings:
  51. settings[i] = new_settings[i]
  52. def load_model(model_name):
  53. print(f"Loading {model_name}...")
  54. t0 = time.time()
  55. # Default settings
  56. if not (args.cpu or args.auto_devices or args.load_in_8bit):
  57. if Path(f"torch-dumps/{model_name}.pt").exists():
  58. print("Loading in .pt format...")
  59. model = torch.load(Path(f"torch-dumps/{model_name}.pt"))
  60. elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')) and any(size in model_name.lower() for size in ('13b', '20b', '30b')):
  61. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True)
  62. else:
  63. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
  64. # Custom
  65. else:
  66. settings = ["low_cpu_mem_usage=True"]
  67. cuda = ""
  68. command = "AutoModelForCausalLM.from_pretrained"
  69. if args.cpu:
  70. settings.append("torch_dtype=torch.float32")
  71. else:
  72. if args.load_in_8bit:
  73. settings.append("device_map='auto'")
  74. settings.append("load_in_8bit=True")
  75. else:
  76. settings.append("torch_dtype=torch.float16")
  77. if args.auto_devices:
  78. settings.append("device_map='auto'")
  79. else:
  80. cuda = ".cuda()"
  81. settings = ', '.join(settings)
  82. command = f"{command}(Path(f'models/{model_name}'), {settings}){cuda}"
  83. model = eval(command)
  84. # Loading the tokenizer
  85. if model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path(f"models/gpt-j-6B/").exists():
  86. tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
  87. else:
  88. tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{model_name}/"))
  89. print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
  90. return model, tokenizer
  91. # Removes empty replies from gpt4chan outputs
  92. def fix_gpt4chan(s):
  93. for i in range(10):
  94. s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
  95. s = re.sub("--- [0-9]*\n *\n---", "---", s)
  96. s = re.sub("--- [0-9]*\n\n\n---", "---", s)
  97. return s
  98. # Fix the LaTeX equations in GALACTICA
  99. def fix_galactica(s):
  100. s = s.replace(r'\[', r'$')
  101. s = s.replace(r'\]', r'$')
  102. s = s.replace(r'\(', r'$')
  103. s = s.replace(r'\)', r'$')
  104. s = s.replace(r'$$', r'$')
  105. return s
  106. def generate_html(s):
  107. s = '\n'.join([f'<p style="margin-bottom: 20px">{line}</p>' for line in s.split('\n')])
  108. s = f'<div style="max-width: 600px; margin-left: auto; margin-right: auto; background-color:#eef2ff; color:#0b0f19; padding:3em; font-size:1.2em;">{s}</div>'
  109. return s
  110. def generate_reply(question, tokens, inference_settings, selected_model, eos_token=None):
  111. global model, tokenizer, model_name, loaded_preset, preset
  112. if selected_model != model_name:
  113. model_name = selected_model
  114. model = None
  115. tokenizer = None
  116. if not args.cpu:
  117. torch.cuda.empty_cache()
  118. model, tokenizer = load_model(model_name)
  119. if inference_settings != loaded_preset:
  120. with open(Path(f'presets/{inference_settings}.txt'), 'r') as infile:
  121. preset = infile.read()
  122. loaded_preset = inference_settings
  123. if not args.cpu:
  124. torch.cuda.empty_cache()
  125. input_ids = tokenizer.encode(str(question), return_tensors='pt').cuda()
  126. cuda = ".cuda()"
  127. else:
  128. input_ids = tokenizer.encode(str(question), return_tensors='pt')
  129. cuda = ""
  130. if eos_token is None:
  131. output = eval(f"model.generate(input_ids, {preset}){cuda}")
  132. else:
  133. n = tokenizer.encode(eos_token, return_tensors='pt')[0][-1]
  134. output = eval(f"model.generate(input_ids, eos_token_id={n}, {preset}){cuda}")
  135. reply = tokenizer.decode(output[0], skip_special_tokens=True)
  136. reply = reply.replace(r'<|endoftext|>', '')
  137. if model_name.lower().startswith('galactica'):
  138. reply = fix_galactica(reply)
  139. return reply, reply, generate_html(reply)
  140. elif model_name.lower().startswith('gpt4chan'):
  141. reply = fix_gpt4chan(reply)
  142. return reply, 'Only applicable for galactica models.', generate_4chan_html(reply)
  143. else:
  144. return reply, 'Only applicable for galactica models.', generate_html(reply)
  145. # Choosing the default model
  146. if args.model is not None:
  147. model_name = args.model
  148. else:
  149. if len(available_models) == 0:
  150. print("No models are available! Please download at least one.")
  151. exit(0)
  152. elif len(available_models) == 1:
  153. i = 0
  154. else:
  155. print("The following models are available:\n")
  156. for i,model in enumerate(available_models):
  157. print(f"{i+1}. {model}")
  158. print(f"\nWhich one do you want to load? 1-{len(available_models)}\n")
  159. i = int(input())-1
  160. print()
  161. model_name = available_models[i]
  162. model, tokenizer = load_model(model_name)
  163. # UI settings
  164. if model_name.lower().startswith('gpt4chan'):
  165. default_text = settings['prompt_gpt4chan']
  166. else:
  167. default_text = settings['prompt']
  168. description = f"\n\n# Text generation lab\nGenerate text using Large Language Models.\n"
  169. css=".my-4 {margin-top: 0} .py-6 {padding-top: 2.5rem}"
  170. if args.notebook:
  171. with gr.Blocks(css=css, analytics_enabled=False) as interface:
  172. gr.Markdown(description)
  173. with gr.Tab('Raw'):
  174. textbox = gr.Textbox(value=default_text, lines=23)
  175. with gr.Tab('Markdown'):
  176. markdown = gr.Markdown()
  177. with gr.Tab('HTML'):
  178. html = gr.HTML()
  179. btn = gr.Button("Generate")
  180. length_slider = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
  181. with gr.Row():
  182. with gr.Column():
  183. model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
  184. with gr.Column():
  185. preset_menu = gr.Dropdown(choices=available_presets, value=settings['preset'], label='Settings preset')
  186. btn.click(generate_reply, [textbox, length_slider, preset_menu, model_menu], [textbox, markdown, html], show_progress=True, api_name="textgen")
  187. textbox.submit(generate_reply, [textbox, length_slider, preset_menu, model_menu], [textbox, markdown, html], show_progress=True)
  188. elif args.chat or args.cai_chat:
  189. history = []
  190. # This gets the new line characters right.
  191. def chat_response_cleaner(text):
  192. text = text.replace('\n', '\n\n')
  193. text = re.sub(r"\n{3,}", "\n\n", text)
  194. text = text.strip()
  195. return text
  196. def chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check):
  197. text = chat_response_cleaner(text)
  198. question = context+'\n\n'
  199. for i in range(len(history)):
  200. question += f"{name1}: {history[i][0][3:-5].strip()}\n"
  201. question += f"{name2}: {history[i][1][3:-5].strip()}\n"
  202. question += f"{name1}: {text}\n"
  203. question += f"{name2}:"
  204. if check:
  205. reply = generate_reply(question, tokens, inference_settings, selected_model, eos_token='\n')[0]
  206. reply = reply[len(question):].split('\n')[0].strip()
  207. else:
  208. reply = generate_reply(question, tokens, inference_settings, selected_model)[0]
  209. reply = reply[len(question):]
  210. idx = reply.find(f"\n{name1}:")
  211. if idx != -1:
  212. reply = reply[:idx]
  213. reply = chat_response_cleaner(reply)
  214. history.append((text, reply))
  215. return history
  216. def cai_chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check):
  217. history = chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check)
  218. return generate_chat_html(history, name1, name2)
  219. def remove_last_message(name1, name2):
  220. history.pop()
  221. if args.cai_chat:
  222. return generate_chat_html(history, name1, name2)
  223. else:
  224. return history
  225. def clear():
  226. global history
  227. history = []
  228. def clear_html():
  229. return generate_chat_html([], "", "")
  230. if 'pygmalion' in model_name.lower():
  231. context_str = settings['context_pygmalion']
  232. name1_str = settings['name1_pygmalion']
  233. name2_str = settings['name2_pygmalion']
  234. else:
  235. context_str = settings['context']
  236. name1_str = settings['name1']
  237. name2_str = settings['name2']
  238. with gr.Blocks(css=css+".h-\[40vh\] {height: 50vh}", analytics_enabled=False) as interface:
  239. gr.Markdown(description)
  240. with gr.Row():
  241. with gr.Column():
  242. length_slider = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
  243. with gr.Row():
  244. with gr.Column():
  245. model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
  246. with gr.Column():
  247. preset_menu = gr.Dropdown(choices=available_presets, value=settings['preset'], label='Settings preset')
  248. name1 = gr.Textbox(value=name1_str, lines=1, label='Your name')
  249. name2 = gr.Textbox(value=name2_str, lines=1, label='Bot\'s name')
  250. context = gr.Textbox(value=context_str, lines=2, label='Context')
  251. with gr.Row():
  252. check = gr.Checkbox(value=settings['stop_at_newline'], label='Stop generating at new line character?')
  253. with gr.Column():
  254. if args.cai_chat:
  255. display1 = gr.HTML(value=generate_chat_html([], "", ""))
  256. else:
  257. display1 = gr.Chatbot()
  258. textbox = gr.Textbox(lines=2, label='Input')
  259. btn = gr.Button("Generate")
  260. with gr.Row():
  261. with gr.Column():
  262. btn3 = gr.Button("Remove last message")
  263. with gr.Column():
  264. btn2 = gr.Button("Clear history")
  265. if args.cai_chat:
  266. btn.click(cai_chatbot_wrapper, [textbox, length_slider, preset_menu, model_menu, name1, name2, context, check], display1, show_progress=True, api_name="textgen")
  267. textbox.submit(cai_chatbot_wrapper, [textbox, length_slider, preset_menu, model_menu, name1, name2, context, check], display1, show_progress=True)
  268. btn2.click(clear_html, [], display1, show_progress=False)
  269. else:
  270. btn.click(chatbot_wrapper, [textbox, length_slider, preset_menu, model_menu, name1, name2, context, check], display1, show_progress=True, api_name="textgen")
  271. textbox.submit(chatbot_wrapper, [textbox, length_slider, preset_menu, model_menu, name1, name2, context, check], display1, show_progress=True)
  272. btn2.click(lambda x: "", display1, display1)
  273. btn2.click(clear)
  274. btn3.click(remove_last_message, [name1, name2], display1, show_progress=False)
  275. btn.click(lambda x: "", textbox, textbox, show_progress=False)
  276. textbox.submit(lambda x: "", textbox, textbox, show_progress=False)
  277. else:
  278. def continue_wrapper(question, tokens, inference_settings, selected_model):
  279. a, b, c = generate_reply(question, tokens, inference_settings, selected_model)
  280. return a, a, b, c
  281. with gr.Blocks(css=css, analytics_enabled=False) as interface:
  282. gr.Markdown(description)
  283. with gr.Row():
  284. with gr.Column():
  285. textbox = gr.Textbox(value=default_text, lines=15, label='Input')
  286. length_slider = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
  287. preset_menu = gr.Dropdown(choices=available_presets, value=settings['preset'], label='Settings preset')
  288. model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
  289. btn = gr.Button("Generate")
  290. cont = gr.Button("Continue")
  291. with gr.Column():
  292. with gr.Tab('Raw'):
  293. output_textbox = gr.Textbox(lines=15, label='Output')
  294. with gr.Tab('Markdown'):
  295. markdown = gr.Markdown()
  296. with gr.Tab('HTML'):
  297. html = gr.HTML()
  298. btn.click(generate_reply, [textbox, length_slider, preset_menu, model_menu], [output_textbox, markdown, html], show_progress=True, api_name="textgen")
  299. cont.click(continue_wrapper, [output_textbox, length_slider, preset_menu, model_menu], [output_textbox, textbox, markdown, html], show_progress=True)
  300. textbox.submit(generate_reply, [textbox, length_slider, preset_menu, model_menu], [output_textbox, markdown, html], show_progress=True)
  301. if args.no_listen:
  302. interface.launch(share=False)
  303. else:
  304. interface.launch(share=False, server_name="0.0.0.0")