download-model.py 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200
  1. '''
  2. Downloads models from Hugging Face to models/model-name.
  3. Example:
  4. python download-model.py facebook/opt-1.3b
  5. '''
  6. import argparse
  7. import base64
  8. import datetime
  9. import json
  10. import re
  11. import sys
  12. from pathlib import Path
  13. import requests
  14. import tqdm
  15. from tqdm.contrib.concurrent import thread_map
  16. parser = argparse.ArgumentParser()
  17. parser.add_argument('MODEL', type=str, default=None, nargs='?')
  18. parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.')
  19. parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.')
  20. parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).')
  21. parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.')
  22. args = parser.parse_args()
  23. def get_file(url, output_folder):
  24. r = requests.get(url, stream=True)
  25. with open(output_folder / Path(url.rsplit('/', 1)[1]), 'wb') as f:
  26. total_size = int(r.headers.get('content-length', 0))
  27. block_size = 1024
  28. with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t:
  29. for data in r.iter_content(block_size):
  30. t.update(len(data))
  31. f.write(data)
  32. def sanitize_branch_name(branch_name):
  33. pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
  34. if pattern.match(branch_name):
  35. return branch_name
  36. else:
  37. raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
  38. def select_model_from_default_options():
  39. models = {
  40. "Pygmalion 6B original": ("PygmalionAI", "pygmalion-6b", "b8344bb4eb76a437797ad3b19420a13922aaabe1"),
  41. "Pygmalion 6B main": ("PygmalionAI", "pygmalion-6b", "main"),
  42. "Pygmalion 6B dev": ("PygmalionAI", "pygmalion-6b", "dev"),
  43. "Pygmalion 2.7B": ("PygmalionAI", "pygmalion-2.7b", "main"),
  44. "Pygmalion 1.3B": ("PygmalionAI", "pygmalion-1.3b", "main"),
  45. "Pygmalion 350m": ("PygmalionAI", "pygmalion-350m", "main"),
  46. "OPT 6.7b": ("facebook", "opt-6.7b", "main"),
  47. "OPT 2.7b": ("facebook", "opt-2.7b", "main"),
  48. "OPT 1.3b": ("facebook", "opt-1.3b", "main"),
  49. "OPT 350m": ("facebook", "opt-350m", "main"),
  50. }
  51. choices = {}
  52. print("Select the model that you want to download:\n")
  53. for i,name in enumerate(models):
  54. char = chr(ord('A')+i)
  55. choices[char] = name
  56. print(f"{char}) {name}")
  57. char = chr(ord('A')+len(models))
  58. print(f"{char}) None of the above")
  59. print()
  60. print("Input> ", end='')
  61. choice = input()[0].strip().upper()
  62. if choice == char:
  63. print("""\nThen type the name of your desired Hugging Face model in the format organization/name.
  64. Examples:
  65. PygmalionAI/pygmalion-6b
  66. facebook/opt-1.3b
  67. """)
  68. print("Input> ", end='')
  69. model = input()
  70. branch = "main"
  71. else:
  72. arr = models[choices[choice]]
  73. model = f"{arr[0]}/{arr[1]}"
  74. branch = arr[2]
  75. return model, branch
  76. def get_download_links_from_huggingface(model, branch):
  77. base = "https://huggingface.co"
  78. page = f"/api/models/{model}/tree/{branch}?cursor="
  79. cursor = b""
  80. links = []
  81. sha256 = []
  82. classifications = []
  83. has_pytorch = False
  84. has_pt = False
  85. has_safetensors = False
  86. is_lora = False
  87. while True:
  88. content = requests.get(f"{base}{page}{cursor.decode()}").content
  89. dict = json.loads(content)
  90. if len(dict) == 0:
  91. break
  92. for i in range(len(dict)):
  93. fname = dict[i]['path']
  94. if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')):
  95. is_lora = True
  96. is_pytorch = re.match("(pytorch|adapter)_model.*\.bin", fname)
  97. is_safetensors = re.match(".*\.safetensors", fname)
  98. is_pt = re.match(".*\.pt", fname)
  99. is_tokenizer = re.match("tokenizer.*\.model", fname)
  100. is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer
  101. if any((is_pytorch, is_safetensors, is_pt, is_tokenizer, is_text)):
  102. if 'lfs' in dict[i]:
  103. sha256.append([fname, dict[i]['lfs']['oid']])
  104. if is_text:
  105. links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
  106. classifications.append('text')
  107. continue
  108. if not args.text_only:
  109. links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
  110. if is_safetensors:
  111. has_safetensors = True
  112. classifications.append('safetensors')
  113. elif is_pytorch:
  114. has_pytorch = True
  115. classifications.append('pytorch')
  116. elif is_pt:
  117. has_pt = True
  118. classifications.append('pt')
  119. cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
  120. cursor = base64.b64encode(cursor)
  121. cursor = cursor.replace(b'=', b'%3D')
  122. # If both pytorch and safetensors are available, download safetensors only
  123. if (has_pytorch or has_pt) and has_safetensors:
  124. for i in range(len(classifications)-1, -1, -1):
  125. if classifications[i] in ['pytorch', 'pt']:
  126. links.pop(i)
  127. return links, sha256, is_lora
  128. def download_files(file_list, output_folder, num_threads=8):
  129. thread_map(lambda url: get_file(url, output_folder), file_list, max_workers=num_threads)
  130. if __name__ == '__main__':
  131. model = args.MODEL
  132. branch = args.branch
  133. if model is None:
  134. model, branch = select_model_from_default_options()
  135. else:
  136. if model[-1] == '/':
  137. model = model[:-1]
  138. branch = args.branch
  139. if branch is None:
  140. branch = "main"
  141. else:
  142. try:
  143. branch = sanitize_branch_name(branch)
  144. except ValueError as err_branch:
  145. print(f"Error: {err_branch}")
  146. sys.exit()
  147. links, sha256, is_lora = get_download_links_from_huggingface(model, branch)
  148. if args.output is not None:
  149. base_folder = args.output
  150. else:
  151. base_folder = 'models' if not is_lora else 'loras'
  152. output_folder = f"{'_'.join(model.split('/')[-2:])}"
  153. if branch != 'main':
  154. output_folder += f'_{branch}'
  155. # Creating the folder and writing the metadata
  156. output_folder = Path(base_folder) / output_folder
  157. if not output_folder.exists():
  158. output_folder.mkdir()
  159. with open(output_folder / 'huggingface-metadata.txt', 'w') as f:
  160. f.write(f'url: https://huggingface.co/{model}\n')
  161. f.write(f'branch: {branch}\n')
  162. f.write(f'download date: {str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))}\n')
  163. sha256_str = ''
  164. for i in range(len(sha256)):
  165. sha256_str += f' {sha256[i][1]} {sha256[i][0]}\n'
  166. if sha256_str != '':
  167. f.write(f'sha256sum:\n{sha256_str}')
  168. # Downloading the files
  169. print(f"Downloading the model to {output_folder}")
  170. download_files(links, output_folder, args.threads)
  171. print()