| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 |
- '''
- Downloads models from Hugging Face to models/model-name.
- Example:
- python download-model.py facebook/opt-1.3b
- '''
- import argparse
- import base64
- import datetime
- import json
- import re
- import sys
- from pathlib import Path
- import requests
- import tqdm
- from tqdm.contrib.concurrent import thread_map
- parser = argparse.ArgumentParser()
- parser.add_argument('MODEL', type=str, default=None, nargs='?')
- parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.')
- parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.')
- parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).')
- parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.')
- args = parser.parse_args()
- def get_file(url, output_folder):
- r = requests.get(url, stream=True)
- with open(output_folder / Path(url.rsplit('/', 1)[1]), 'wb') as f:
- total_size = int(r.headers.get('content-length', 0))
- block_size = 1024
- with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t:
- for data in r.iter_content(block_size):
- t.update(len(data))
- f.write(data)
- def sanitize_branch_name(branch_name):
- pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
- if pattern.match(branch_name):
- return branch_name
- else:
- raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
- def select_model_from_default_options():
- models = {
- "Pygmalion 6B original": ("PygmalionAI", "pygmalion-6b", "b8344bb4eb76a437797ad3b19420a13922aaabe1"),
- "Pygmalion 6B main": ("PygmalionAI", "pygmalion-6b", "main"),
- "Pygmalion 6B dev": ("PygmalionAI", "pygmalion-6b", "dev"),
- "Pygmalion 2.7B": ("PygmalionAI", "pygmalion-2.7b", "main"),
- "Pygmalion 1.3B": ("PygmalionAI", "pygmalion-1.3b", "main"),
- "Pygmalion 350m": ("PygmalionAI", "pygmalion-350m", "main"),
- "OPT 6.7b": ("facebook", "opt-6.7b", "main"),
- "OPT 2.7b": ("facebook", "opt-2.7b", "main"),
- "OPT 1.3b": ("facebook", "opt-1.3b", "main"),
- "OPT 350m": ("facebook", "opt-350m", "main"),
- }
- choices = {}
- print("Select the model that you want to download:\n")
- for i,name in enumerate(models):
- char = chr(ord('A')+i)
- choices[char] = name
- print(f"{char}) {name}")
- char = chr(ord('A')+len(models))
- print(f"{char}) None of the above")
- print()
- print("Input> ", end='')
- choice = input()[0].strip().upper()
- if choice == char:
- print("""\nThen type the name of your desired Hugging Face model in the format organization/name.
- Examples:
- PygmalionAI/pygmalion-6b
- facebook/opt-1.3b
- """)
- print("Input> ", end='')
- model = input()
- branch = "main"
- else:
- arr = models[choices[choice]]
- model = f"{arr[0]}/{arr[1]}"
- branch = arr[2]
- return model, branch
- def get_download_links_from_huggingface(model, branch):
- base = "https://huggingface.co"
- page = f"/api/models/{model}/tree/{branch}?cursor="
- cursor = b""
- links = []
- sha256 = []
- classifications = []
- has_pytorch = False
- has_pt = False
- has_safetensors = False
- is_lora = False
- while True:
- content = requests.get(f"{base}{page}{cursor.decode()}").content
- dict = json.loads(content)
- if len(dict) == 0:
- break
- for i in range(len(dict)):
- fname = dict[i]['path']
- if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')):
- is_lora = True
- is_pytorch = re.match("(pytorch|adapter)_model.*\.bin", fname)
- is_safetensors = re.match(".*\.safetensors", fname)
- is_pt = re.match(".*\.pt", fname)
- is_tokenizer = re.match("tokenizer.*\.model", fname)
- is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer
- if any((is_pytorch, is_safetensors, is_pt, is_tokenizer, is_text)):
- if 'lfs' in dict[i]:
- sha256.append([fname, dict[i]['lfs']['oid']])
- if is_text:
- links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
- classifications.append('text')
- continue
- if not args.text_only:
- links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
- if is_safetensors:
- has_safetensors = True
- classifications.append('safetensors')
- elif is_pytorch:
- has_pytorch = True
- classifications.append('pytorch')
- elif is_pt:
- has_pt = True
- classifications.append('pt')
- cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
- cursor = base64.b64encode(cursor)
- cursor = cursor.replace(b'=', b'%3D')
- # If both pytorch and safetensors are available, download safetensors only
- if (has_pytorch or has_pt) and has_safetensors:
- for i in range(len(classifications)-1, -1, -1):
- if classifications[i] in ['pytorch', 'pt']:
- links.pop(i)
- return links, sha256, is_lora
- def download_files(file_list, output_folder, num_threads=8):
- thread_map(lambda url: get_file(url, output_folder), file_list, max_workers=num_threads)
- if __name__ == '__main__':
- model = args.MODEL
- branch = args.branch
- if model is None:
- model, branch = select_model_from_default_options()
- else:
- if model[-1] == '/':
- model = model[:-1]
- branch = args.branch
- if branch is None:
- branch = "main"
- else:
- try:
- branch = sanitize_branch_name(branch)
- except ValueError as err_branch:
- print(f"Error: {err_branch}")
- sys.exit()
- links, sha256, is_lora = get_download_links_from_huggingface(model, branch)
- if args.output is not None:
- base_folder = args.output
- else:
- base_folder = 'models' if not is_lora else 'loras'
- output_folder = f"{'_'.join(model.split('/')[-2:])}"
- if branch != 'main':
- output_folder += f'_{branch}'
- # Creating the folder and writing the metadata
- output_folder = Path(base_folder) / output_folder
- if not output_folder.exists():
- output_folder.mkdir()
- with open(output_folder / 'huggingface-metadata.txt', 'w') as f:
- f.write(f'url: https://huggingface.co/{model}\n')
- f.write(f'branch: {branch}\n')
- f.write(f'download date: {str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))}\n')
- sha256_str = ''
- for i in range(len(sha256)):
- sha256_str += f' {sha256[i][1]} {sha256[i][0]}\n'
- if sha256_str != '':
- f.write(f'sha256sum:\n{sha256_str}')
- # Downloading the files
- print(f"Downloading the model to {output_folder}")
- download_files(links, output_folder, args.threads)
- print()
|