download-model.py 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178
  1. '''
  2. Downloads models from Hugging Face to models/model-name.
  3. Example:
  4. python download-model.py facebook/opt-1.3b
  5. '''
  6. import argparse
  7. import base64
  8. import json
  9. import re
  10. import sys
  11. from pathlib import Path
  12. import requests
  13. import tqdm
  14. from tqdm.contrib.concurrent import thread_map
  15. def get_file(url, output_folder):
  16. r = requests.get(url, stream=True)
  17. with open(output_folder / Path(url.rsplit('/', 1)[1]), 'wb') as f:
  18. total_size = int(r.headers.get('content-length', 0))
  19. block_size = 1024
  20. with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t:
  21. for data in r.iter_content(block_size):
  22. t.update(len(data))
  23. f.write(data)
  24. def sanitize_branch_name(branch_name):
  25. pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
  26. if pattern.match(branch_name):
  27. return branch_name
  28. else:
  29. raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
  30. def select_model_from_default_options():
  31. models = {
  32. "Pygmalion 6B original": ("PygmalionAI", "pygmalion-6b", "b8344bb4eb76a437797ad3b19420a13922aaabe1"),
  33. "Pygmalion 6B main": ("PygmalionAI", "pygmalion-6b", "main"),
  34. "Pygmalion 6B dev": ("PygmalionAI", "pygmalion-6b", "dev"),
  35. "Pygmalion 2.7B": ("PygmalionAI", "pygmalion-2.7b", "main"),
  36. "Pygmalion 1.3B": ("PygmalionAI", "pygmalion-1.3b", "main"),
  37. "Pygmalion 350m": ("PygmalionAI", "pygmalion-350m", "main"),
  38. "OPT 6.7b": ("facebook", "opt-6.7b", "main"),
  39. "OPT 2.7b": ("facebook", "opt-2.7b", "main"),
  40. "OPT 1.3b": ("facebook", "opt-1.3b", "main"),
  41. "OPT 350m": ("facebook", "opt-350m", "main"),
  42. }
  43. choices = {}
  44. print("Select the model that you want to download:\n")
  45. for i,name in enumerate(models):
  46. char = chr(ord('A')+i)
  47. choices[char] = name
  48. print(f"{char}) {name}")
  49. char = chr(ord('A')+len(models))
  50. print(f"{char}) None of the above")
  51. print()
  52. print("Input> ", end='')
  53. choice = input()[0].strip().upper()
  54. if choice == char:
  55. print("""\nThen type the name of your desired Hugging Face model in the format organization/name.
  56. Examples:
  57. PygmalionAI/pygmalion-6b
  58. facebook/opt-1.3b
  59. """)
  60. print("Input> ", end='')
  61. model = input()
  62. branch = "main"
  63. else:
  64. arr = models[choices[choice]]
  65. model = f"{arr[0]}/{arr[1]}"
  66. branch = arr[2]
  67. return model, branch
  68. def get_download_links_from_huggingface(model, branch):
  69. base = "https://huggingface.co"
  70. page = f"/api/models/{model}/tree/{branch}?cursor="
  71. cursor = b""
  72. links = []
  73. classifications = []
  74. has_pytorch = False
  75. has_pt = False
  76. has_safetensors = False
  77. is_lora = False
  78. while True:
  79. content = requests.get(f"{base}{page}{cursor.decode()}").content
  80. dict = json.loads(content)
  81. if len(dict) == 0:
  82. break
  83. for i in range(len(dict)):
  84. fname = dict[i]['path']
  85. if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')):
  86. is_lora = True
  87. is_pytorch = re.match("(pytorch|adapter)_model.*\.bin", fname)
  88. is_safetensors = re.match(".*\.safetensors", fname)
  89. is_pt = re.match(".*\.pt", fname)
  90. is_tokenizer = re.match("tokenizer.*\.model", fname)
  91. is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer
  92. if any((is_pytorch, is_safetensors, is_pt, is_tokenizer, is_text)):
  93. if is_text:
  94. links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
  95. classifications.append('text')
  96. continue
  97. if not args.text_only:
  98. links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
  99. if is_safetensors:
  100. has_safetensors = True
  101. classifications.append('safetensors')
  102. elif is_pytorch:
  103. has_pytorch = True
  104. classifications.append('pytorch')
  105. elif is_pt:
  106. has_pt = True
  107. classifications.append('pt')
  108. cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
  109. cursor = base64.b64encode(cursor)
  110. cursor = cursor.replace(b'=', b'%3D')
  111. # If both pytorch and safetensors are available, download safetensors only
  112. if (has_pytorch or has_pt) and has_safetensors:
  113. for i in range(len(classifications)-1, -1, -1):
  114. if classifications[i] in ['pytorch', 'pt']:
  115. links.pop(i)
  116. return links, is_lora
  117. def download_files(file_list, output_folder, num_threads=8):
  118. thread_map(lambda url: get_file(url, output_folder), file_list, max_workers=num_threads, verbose=False)
  119. if __name__ == '__main__':
  120. parser = argparse.ArgumentParser()
  121. parser.add_argument('MODEL', type=str, default=None, nargs='?')
  122. parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.')
  123. parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.')
  124. parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).')
  125. args = parser.parse_args()
  126. model = args.MODEL
  127. branch = args.branch
  128. if model is None:
  129. model, branch = select_model_from_default_options()
  130. else:
  131. if model[-1] == '/':
  132. model = model[:-1]
  133. branch = args.branch
  134. if branch is None:
  135. branch = "main"
  136. else:
  137. try:
  138. branch = sanitize_branch_name(branch)
  139. except ValueError as err_branch:
  140. print(f"Error: {err_branch}")
  141. sys.exit()
  142. links, is_lora = get_download_links_from_huggingface(model, branch)
  143. base_folder = 'models' if not is_lora else 'loras'
  144. if branch != 'main':
  145. output_folder = Path(base_folder) / (model.split('/')[-1] + f'_{branch}')
  146. else:
  147. output_folder = Path(base_folder) / model.split('/')[-1]
  148. if not output_folder.exists():
  149. output_folder.mkdir()
  150. # Downloading the files
  151. print(f"Downloading the model to {output_folder}")
  152. download_files(links, output_folder, args.threads)