models.py 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195
  1. import json
  2. import os
  3. import time
  4. import zipfile
  5. from pathlib import Path
  6. import numpy as np
  7. import torch
  8. import transformers
  9. from accelerate import infer_auto_device_map, init_empty_weights
  10. from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
  11. BitsAndBytesConfig)
  12. import modules.shared as shared
  13. transformers.logging.set_verbosity_error()
  14. local_rank = None
  15. if shared.args.flexgen:
  16. from flexgen.flex_opt import CompressionConfig, ExecutionEnv, OptLM, Policy
  17. if shared.args.deepspeed:
  18. import deepspeed
  19. from transformers.deepspeed import (HfDeepSpeedConfig,
  20. is_deepspeed_zero3_enabled)
  21. from modules.deepspeed_parameters import generate_ds_config
  22. # Distributed setup
  23. local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
  24. world_size = int(os.getenv("WORLD_SIZE", "1"))
  25. torch.cuda.set_device(local_rank)
  26. deepspeed.init_distributed()
  27. ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
  28. dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
  29. def load_model(model_name):
  30. print(f"Loading {model_name}...")
  31. t0 = time.time()
  32. shared.is_RWKV = model_name.lower().startswith('rwkv-')
  33. # Default settings
  34. if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.gptq_bits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
  35. if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
  36. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
  37. else:
  38. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
  39. if torch.has_mps:
  40. device = torch.device('mps')
  41. model = model.to(device)
  42. else:
  43. model = model.cuda()
  44. # FlexGen
  45. elif shared.args.flexgen:
  46. # Initialize environment
  47. env = ExecutionEnv.create(shared.args.disk_cache_dir)
  48. # Offloading policy
  49. policy = Policy(1, 1,
  50. shared.args.percent[0], shared.args.percent[1],
  51. shared.args.percent[2], shared.args.percent[3],
  52. shared.args.percent[4], shared.args.percent[5],
  53. overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight,
  54. cpu_cache_compute=False, attn_sparsity=1.0,
  55. compress_weight=shared.args.compress_weight,
  56. comp_weight_config=CompressionConfig(
  57. num_bits=4, group_size=64,
  58. group_dim=0, symmetric=False),
  59. compress_cache=False,
  60. comp_cache_config=CompressionConfig(
  61. num_bits=4, group_size=64,
  62. group_dim=2, symmetric=False))
  63. model = OptLM(f"facebook/{shared.model_name}", env, "models", policy)
  64. # DeepSpeed ZeRO-3
  65. elif shared.args.deepspeed:
  66. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
  67. model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
  68. model.module.eval() # Inference
  69. print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
  70. # RMKV model (not on HuggingFace)
  71. elif shared.is_RWKV:
  72. from modules.RWKV import RWKVModel, RWKVTokenizer
  73. model = RWKVModel.from_pretrained(Path(f'models/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
  74. tokenizer = RWKVTokenizer.from_pretrained(Path('models'))
  75. return model, tokenizer
  76. # Quantized model
  77. elif shared.args.gptq_bits > 0:
  78. from modules.GPTQ_loader import load_quantized
  79. model = load_quantized(model_name)
  80. # Custom
  81. else:
  82. params = {"low_cpu_mem_usage": True}
  83. if not any((shared.args.cpu, torch.cuda.is_available(), torch.has_mps)):
  84. print("Warning: torch.cuda.is_available() returned False.\nThis means that no GPU has been detected.\nFalling back to CPU mode.\n")
  85. shared.args.cpu = True
  86. if shared.args.cpu:
  87. params["torch_dtype"] = torch.float32
  88. else:
  89. params["device_map"] = 'auto'
  90. if shared.args.load_in_8bit and any((shared.args.auto_devices, shared.args.gpu_memory)):
  91. params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True)
  92. elif shared.args.load_in_8bit:
  93. params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True)
  94. elif shared.args.bf16:
  95. params["torch_dtype"] = torch.bfloat16
  96. else:
  97. params["torch_dtype"] = torch.float16
  98. if shared.args.gpu_memory:
  99. memory_map = shared.args.gpu_memory
  100. max_memory = {}
  101. for i in range(len(memory_map)):
  102. max_memory[i] = f'{memory_map[i]}GiB'
  103. max_memory['cpu'] = f'{shared.args.cpu_memory or 99}GiB'
  104. params['max_memory'] = max_memory
  105. elif shared.args.auto_devices:
  106. total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024*1024))
  107. suggestion = round((total_mem-1000) / 1000) * 1000
  108. if total_mem - suggestion < 800:
  109. suggestion -= 1000
  110. suggestion = int(round(suggestion/1000))
  111. print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
  112. max_memory = {0: f'{suggestion}GiB', 'cpu': f'{shared.args.cpu_memory or 99}GiB'}
  113. params['max_memory'] = max_memory
  114. if shared.args.disk:
  115. params["offload_folder"] = shared.args.disk_cache_dir
  116. checkpoint = Path(f'models/{shared.model_name}')
  117. if shared.args.load_in_8bit and params.get('max_memory', None) is not None and params['device_map'] == 'auto':
  118. config = AutoConfig.from_pretrained(checkpoint)
  119. with init_empty_weights():
  120. model = AutoModelForCausalLM.from_config(config)
  121. model.tie_weights()
  122. params['device_map'] = infer_auto_device_map(
  123. model,
  124. dtype=torch.int8,
  125. max_memory=params['max_memory'],
  126. no_split_module_classes = model._no_split_modules
  127. )
  128. model = AutoModelForCausalLM.from_pretrained(checkpoint, **params)
  129. # Loading the tokenizer
  130. if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path("models/gpt-j-6B/").exists():
  131. tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
  132. else:
  133. tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{shared.model_name}/"))
  134. tokenizer.truncation_side = 'left'
  135. print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
  136. return model, tokenizer
  137. def load_soft_prompt(name):
  138. if name == 'None':
  139. shared.soft_prompt = False
  140. shared.soft_prompt_tensor = None
  141. else:
  142. with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
  143. zf.extract('tensor.npy')
  144. zf.extract('meta.json')
  145. j = json.loads(open('meta.json', 'r').read())
  146. print(f"\nLoading the softprompt \"{name}\".")
  147. for field in j:
  148. if field != 'name':
  149. if type(j[field]) is list:
  150. print(f"{field}: {', '.join(j[field])}")
  151. else:
  152. print(f"{field}: {j[field]}")
  153. print()
  154. tensor = np.load('tensor.npy')
  155. Path('tensor.npy').unlink()
  156. Path('meta.json').unlink()
  157. tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
  158. tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
  159. shared.soft_prompt = True
  160. shared.soft_prompt_tensor = tensor
  161. return name