| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748 |
- import os
- import time
- import types
- from pathlib import Path
- import numpy as np
- import torch
- import modules.shared as shared
- np.set_printoptions(precision=4, suppress=True, linewidth=200)
- os.environ['RWKV_JIT_ON'] = '1'
- os.environ["RWKV_CUDA_ON"] = '0' # '1' : use CUDA kernel for seq mode (much faster)
- from rwkv.model import RWKV
- from rwkv.utils import PIPELINE, PIPELINE_ARGS
- class RWKVModel:
- def __init__(self):
- pass
- @classmethod
- def from_pretrained(self, path, dtype="fp16", device="cuda"):
- tokenizer_path = Path(f"{path.parent}/20B_tokenizer.json")
- if shared.args.rwkv_strategy is None:
- model = RWKV(model=os.path.abspath(path), strategy=f'{device} {dtype}')
- else:
- model = RWKV(model=os.path.abspath(path), strategy=shared.args.rwkv_strategy)
- pipeline = PIPELINE(model, os.path.abspath(tokenizer_path))
- result = self()
- result.pipeline = pipeline
- return result
- def generate(self, context, token_count=20, temperature=1, top_p=1, alpha_frequency=0.25, alpha_presence=0.25, token_ban=[0], token_stop=[], callback=None):
- args = PIPELINE_ARGS(
- temperature = temperature,
- top_p = top_p,
- alpha_frequency = alpha_frequency, # Frequency Penalty (as in GPT-3)
- alpha_presence = alpha_presence, # Presence Penalty (as in GPT-3)
- token_ban = token_ban, # ban the generation of some tokens
- token_stop = token_stop
- )
- return context+self.pipeline.generate(context, token_count=token_count, args=args, callback=callback)
|