| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554 |
- import gc
- import io
- import json
- import os
- import re
- import sys
- import time
- import zipfile
- from pathlib import Path
- import gradio as gr
- import numpy as np
- import torch
- import transformers
- from PIL import Image
- from transformers import AutoConfig
- from transformers import AutoModelForCausalLM
- from transformers import AutoTokenizer
- import modules.chat as chat
- import modules.extensions as extensions_module
- import modules.shared as shared
- from modules.extensions import extension_state
- from modules.extensions import load_extensions
- from modules.extensions import update_extensions_parameters
- from modules.html_generator import *
- from modules.prompt import generate_reply
- from modules.ui import *
- transformers.logging.set_verbosity_error()
- if (shared.args.chat or shared.args.cai_chat) and not shared.args.no_stream:
- print("Warning: chat mode currently becomes somewhat slower with text streaming on.\nConsider starting the web UI with the --no-stream option.\n")
-
- settings = {
- 'max_new_tokens': 200,
- 'max_new_tokens_min': 1,
- 'max_new_tokens_max': 2000,
- 'preset': 'NovelAI-Sphinx Moth',
- 'name1': 'Person 1',
- 'name2': 'Person 2',
- 'context': 'This is a conversation between two people.',
- 'prompt': 'Common sense questions and answers\n\nQuestion: \nFactual answer:',
- 'prompt_gpt4chan': '-----\n--- 865467536\nInput text\n--- 865467537\n',
- 'stop_at_newline': True,
- 'chat_prompt_size': 2048,
- 'chat_prompt_size_min': 0,
- 'chat_prompt_size_max': 2048,
- 'preset_pygmalion': 'Pygmalion',
- 'name1_pygmalion': 'You',
- 'name2_pygmalion': 'Kawaii',
- 'context_pygmalion': "Kawaii's persona: Kawaii is a cheerful person who loves to make others smile. She is an optimist who loves to spread happiness and positivity wherever she goes.\n<START>",
- 'stop_at_newline_pygmalion': False,
- }
- if shared.args.settings is not None and Path(shared.args.settings).exists():
- new_settings = json.loads(open(Path(shared.args.settings), 'r').read())
- for item in new_settings:
- settings[item] = new_settings[item]
- if shared.args.flexgen:
- from flexgen.flex_opt import (Policy, OptLM, TorchDevice, TorchDisk, TorchMixedDevice, CompressionConfig, Env, Task, get_opt_config)
- if shared.args.deepspeed:
- import deepspeed
- from transformers.deepspeed import HfDeepSpeedConfig, is_deepspeed_zero3_enabled
- from modules.deepspeed_parameters import generate_ds_config
- # Distributed setup
- local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
- world_size = int(os.getenv("WORLD_SIZE", "1"))
- torch.cuda.set_device(local_rank)
- deepspeed.init_distributed()
- ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
- dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
- if shared.args.picture and (shared.args.cai_chat or shared.args.chat):
- import modules.bot_picture as bot_picture
- def load_model(model_name):
- print(f"Loading {model_name}...")
- t0 = time.time()
- # Default settings
- if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen):
- if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
- else:
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16).cuda()
- # FlexGen
- elif shared.args.flexgen:
- gpu = TorchDevice("cuda:0")
- cpu = TorchDevice("cpu")
- disk = TorchDisk(shared.args.disk_cache_dir)
- env = Env(gpu=gpu, cpu=cpu, disk=disk, mixed=TorchMixedDevice([gpu, cpu, disk]))
- # Offloading policy
- policy = Policy(1, 1,
- shared.args.percent[0], shared.args.percent[1],
- shared.args.percent[2], shared.args.percent[3],
- shared.args.percent[4], shared.args.percent[5],
- overlap=True, sep_layer=True, pin_weight=True,
- cpu_cache_compute=False, attn_sparsity=1.0,
- compress_weight=shared.args.compress_weight,
- comp_weight_config=CompressionConfig(
- num_bits=4, group_size=64,
- group_dim=0, symmetric=False),
- compress_cache=False,
- comp_cache_config=CompressionConfig(
- num_bits=4, group_size=64,
- group_dim=2, symmetric=False))
- opt_config = get_opt_config(f"facebook/{shared.model_name}")
- model = OptLM(opt_config, env, "models", policy)
- model.init_all_weights()
- # DeepSpeed ZeRO-3
- elif shared.args.deepspeed:
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
- model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
- model.module.eval() # Inference
- print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
- # Custom
- else:
- command = "AutoModelForCausalLM.from_pretrained"
- params = ["low_cpu_mem_usage=True"]
- if not shared.args.cpu and not torch.cuda.is_available():
- print("Warning: no GPU has been detected.\nFalling back to CPU mode.\n")
- shared.args.cpu = True
- if shared.args.cpu:
- params.append("low_cpu_mem_usage=True")
- params.append("torch_dtype=torch.float32")
- else:
- params.append("device_map='auto'")
- params.append("load_in_8bit=True" if shared.args.load_in_8bit else "torch_dtype=torch.bfloat16" if shared.args.bf16 else "torch_dtype=torch.float16")
- if shared.args.gpu_memory:
- params.append(f"max_memory={{0: '{shared.args.gpu_memory or '99'}GiB', 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
- elif not shared.args.load_in_8bit:
- total_mem = (torch.cuda.get_device_properties(0).total_memory/(1024*1024))
- suggestion = round((total_mem-1000)/1000)*1000
- if total_mem-suggestion < 800:
- suggestion -= 1000
- suggestion = int(round(suggestion/1000))
- print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
- params.append(f"max_memory={{0: '{suggestion}GiB', 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
- if shared.args.disk:
- params.append(f"offload_folder='{shared.args.disk_cache_dir}'")
- command = f"{command}(Path(f'models/{shared.model_name}'), {', '.join(set(params))})"
- model = eval(command)
- # Loading the tokenizer
- if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path(f"models/gpt-j-6B/").exists():
- tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
- else:
- tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{shared.model_name}/"))
- tokenizer.truncation_side = 'left'
- print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
- return model, tokenizer
- def load_soft_prompt(name):
- if name == 'None':
- shared.soft_prompt = False
- shared.soft_prompt_tensor = None
- else:
- with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
- zf.extract('tensor.npy')
- zf.extract('meta.json')
- j = json.loads(open('meta.json', 'r').read())
- print(f"\nLoading the softprompt \"{name}\".")
- for field in j:
- if field != 'name':
- if type(j[field]) is list:
- print(f"{field}: {', '.join(j[field])}")
- else:
- print(f"{field}: {j[field]}")
- print()
- tensor = np.load('tensor.npy')
- Path('tensor.npy').unlink()
- Path('meta.json').unlink()
- tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
- tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
- shared.soft_prompt = True
- shared.soft_prompt_tensor = tensor
- return name
- def upload_soft_prompt(file):
- with zipfile.ZipFile(io.BytesIO(file)) as zf:
- zf.extract('meta.json')
- j = json.loads(open('meta.json', 'r').read())
- name = j['name']
- Path('meta.json').unlink()
- with open(Path(f'softprompts/{name}.zip'), 'wb') as f:
- f.write(file)
- return name
- def load_model_wrapper(selected_model):
- if selected_model != shared.model_name:
- shared.model_name = selected_model
- model = shared.tokenizer = None
- if not shared.args.cpu:
- gc.collect()
- torch.cuda.empty_cache()
- shared.model, shared.tokenizer = load_model(shared.model_name)
- return selected_model
- def load_preset_values(preset_menu, return_dict=False):
- generate_params = {
- 'do_sample': True,
- 'temperature': 1,
- 'top_p': 1,
- 'typical_p': 1,
- 'repetition_penalty': 1,
- 'top_k': 50,
- 'num_beams': 1,
- 'penalty_alpha': 0,
- 'min_length': 0,
- 'length_penalty': 1,
- 'no_repeat_ngram_size': 0,
- 'early_stopping': False,
- }
- with open(Path(f'presets/{preset_menu}.txt'), 'r') as infile:
- preset = infile.read()
- for i in preset.splitlines():
- i = i.rstrip(',').strip().split('=')
- if len(i) == 2 and i[0].strip() != 'tokens':
- generate_params[i[0].strip()] = eval(i[1].strip())
- generate_params['temperature'] = min(1.99, generate_params['temperature'])
- if return_dict:
- return generate_params
- else:
- return generate_params['do_sample'], generate_params['temperature'], generate_params['top_p'], generate_params['typical_p'], generate_params['repetition_penalty'], generate_params['top_k'], generate_params['min_length'], generate_params['no_repeat_ngram_size'], generate_params['num_beams'], generate_params['penalty_alpha'], generate_params['length_penalty'], generate_params['early_stopping']
- def get_available_models():
- return sorted([item.name for item in list(Path('models/').glob('*')) if not item.name.endswith(('.txt', '-np'))], key=str.lower)
- def get_available_presets():
- return sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('presets').glob('*.txt'))), key=str.lower)
- def get_available_characters():
- return ["None"] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('characters').glob('*.json'))), key=str.lower)
- def get_available_extensions():
- return sorted(set(map(lambda x : x.parts[1], Path('extensions').glob('*/script.py'))), key=str.lower)
- def get_available_softprompts():
- return ["None"] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('softprompts').glob('*.zip'))), key=str.lower)
- def create_extensions_block():
- extensions_ui_elements = []
- default_values = []
- if not (shared.args.chat or shared.args.cai_chat):
- gr.Markdown('## Extensions parameters')
- for ext in sorted(extension_state, key=lambda x : extension_state[x][1]):
- if extension_state[ext][0] == True:
- params = extensions_module.get_params(ext)
- for param in params:
- _id = f"{ext}-{param}"
- default_value = settings[_id] if _id in settings else params[param]
- default_values.append(default_value)
- if type(params[param]) == str:
- extensions_ui_elements.append(gr.Textbox(value=default_value, label=f"{ext}-{param}"))
- elif type(params[param]) in [int, float]:
- extensions_ui_elements.append(gr.Number(value=default_value, label=f"{ext}-{param}"))
- elif type(params[param]) == bool:
- extensions_ui_elements.append(gr.Checkbox(value=default_value, label=f"{ext}-{param}"))
- update_extensions_parameters(*default_values)
- btn_extensions = gr.Button("Apply")
- btn_extensions.click(update_extensions_parameters, [*extensions_ui_elements], [])
- def create_settings_menus():
- generate_params = load_preset_values(settings[f'preset{suffix}'] if not shared.args.flexgen else 'Naive', return_dict=True)
- with gr.Row():
- with gr.Column():
- with gr.Row():
- model_menu = gr.Dropdown(choices=available_models, value=shared.model_name, label='Model')
- create_refresh_button(model_menu, lambda : None, lambda : {"choices": get_available_models()}, "refresh-button")
- with gr.Column():
- with gr.Row():
- preset_menu = gr.Dropdown(choices=available_presets, value=settings[f'preset{suffix}'] if not shared.args.flexgen else 'Naive', label='Generation parameters preset')
- create_refresh_button(preset_menu, lambda : None, lambda : {"choices": get_available_presets()}, "refresh-button")
- with gr.Accordion("Custom generation parameters", open=False, elem_id="accordion"):
- with gr.Row():
- do_sample = gr.Checkbox(value=generate_params['do_sample'], label="do_sample")
- temperature = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label="temperature")
- with gr.Row():
- top_k = gr.Slider(0,200,value=generate_params['top_k'],step=1,label="top_k")
- top_p = gr.Slider(0.0,1.0,value=generate_params['top_p'],step=0.01,label="top_p")
- with gr.Row():
- repetition_penalty = gr.Slider(1.0,4.99,value=generate_params['repetition_penalty'],step=0.01,label="repetition_penalty")
- no_repeat_ngram_size = gr.Slider(0, 20, step=1, value=generate_params["no_repeat_ngram_size"], label="no_repeat_ngram_size")
- with gr.Row():
- typical_p = gr.Slider(0.0,1.0,value=generate_params['typical_p'],step=0.01,label="typical_p")
- min_length = gr.Slider(0, 2000, step=1, value=generate_params["min_length"] if shared.args.no_stream else 0, label="min_length", interactive=shared.args.no_stream)
- gr.Markdown("Contrastive search:")
- penalty_alpha = gr.Slider(0, 5, value=generate_params["penalty_alpha"], label="penalty_alpha")
- gr.Markdown("Beam search (uses a lot of VRAM):")
- with gr.Row():
- num_beams = gr.Slider(1, 20, step=1, value=generate_params["num_beams"], label="num_beams")
- length_penalty = gr.Slider(-5, 5, value=generate_params["length_penalty"], label="length_penalty")
- early_stopping = gr.Checkbox(value=generate_params["early_stopping"], label="early_stopping")
- with gr.Accordion("Soft prompt", open=False, elem_id="accordion"):
- with gr.Row():
- softprompts_menu = gr.Dropdown(choices=available_softprompts, value="None", label='Soft prompt')
- create_refresh_button(softprompts_menu, lambda : None, lambda : {"choices": get_available_softprompts()}, "refresh-button")
- gr.Markdown('Upload a soft prompt (.zip format):')
- with gr.Row():
- upload_softprompt = gr.File(type='binary', file_types=[".zip"])
- model_menu.change(load_model_wrapper, [model_menu], [model_menu], show_progress=True)
- preset_menu.change(load_preset_values, [preset_menu], [do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping])
- softprompts_menu.change(load_soft_prompt, [softprompts_menu], [softprompts_menu], show_progress=True)
- upload_softprompt.upload(upload_soft_prompt, [upload_softprompt], [softprompts_menu])
- return preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping
- # Global variables
- available_models = get_available_models()
- available_presets = get_available_presets()
- available_characters = get_available_characters()
- extensions_module.available_extensions = get_available_extensions()
- available_softprompts = get_available_softprompts()
- if shared.args.extensions is not None:
- load_extensions()
- # Choosing the default model
- if shared.args.model is not None:
- shared.model_name = shared.args.model
- else:
- if len(available_models) == 0:
- print("No models are available! Please download at least one.")
- sys.exit(0)
- elif len(available_models) == 1:
- i = 0
- else:
- print("The following models are available:\n")
- for i,model in enumerate(available_models):
- print(f"{i+1}. {model}")
- print(f"\nWhich one do you want to load? 1-{len(available_models)}\n")
- i = int(input())-1
- print()
- shared.model_name = available_models[i]
- shared.model, shared.tokenizer = load_model(shared.model_name)
- loaded_preset = None
- # UI settings
- if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')):
- default_text = settings['prompt_gpt4chan']
- elif re.match('(rosey|chip|joi)_.*_instruct.*', shared.model_name.lower()) is not None:
- default_text = 'User: \n'
- else:
- default_text = settings['prompt']
- description = f"\n\n# Text generation lab\nGenerate text using Large Language Models.\n"
- suffix = '_pygmalion' if 'pygmalion' in shared.model_name.lower() else ''
- buttons = {}
- gen_events = []
- if shared.args.chat or shared.args.cai_chat:
- if Path(f'logs/persistent.json').exists():
- chat.load_history(open(Path(f'logs/persistent.json'), 'rb').read(), settings[f'name1{suffix}'], settings[f'name2{suffix}'])
- with gr.Blocks(css=css+chat_css, analytics_enabled=False) as interface:
- if shared.args.cai_chat:
- display = gr.HTML(value=generate_chat_html(chat.history['visible'], settings[f'name1{suffix}'], settings[f'name2{suffix}'], chat.character))
- else:
- display = gr.Chatbot(value=chat.history['visible'])
- textbox = gr.Textbox(label='Input')
- with gr.Row():
- buttons["Stop"] = gr.Button("Stop")
- buttons["Generate"] = gr.Button("Generate")
- buttons["Regenerate"] = gr.Button("Regenerate")
- with gr.Row():
- buttons["Impersonate"] = gr.Button("Impersonate")
- buttons["Remove last"] = gr.Button("Remove last")
- buttons["Clear history"] = gr.Button("Clear history")
- with gr.Row():
- buttons["Send last reply to input"] = gr.Button("Send last reply to input")
- buttons["Replace last reply"] = gr.Button("Replace last reply")
- if shared.args.picture:
- with gr.Row():
- picture_select = gr.Image(label="Send a picture", type='pil')
- with gr.Tab("Chat settings"):
- name1 = gr.Textbox(value=settings[f'name1{suffix}'], lines=1, label='Your name')
- name2 = gr.Textbox(value=settings[f'name2{suffix}'], lines=1, label='Bot\'s name')
- context = gr.Textbox(value=settings[f'context{suffix}'], lines=2, label='Context')
- with gr.Row():
- character_menu = gr.Dropdown(choices=available_characters, value="None", label='Character')
- create_refresh_button(character_menu, lambda : None, lambda : {"choices": get_available_characters()}, "refresh-button")
- with gr.Row():
- check = gr.Checkbox(value=settings[f'stop_at_newline{suffix}'], label='Stop generating at new line character?')
- with gr.Row():
- with gr.Tab('Chat history'):
- with gr.Row():
- with gr.Column():
- gr.Markdown('Upload')
- upload_chat_history = gr.File(type='binary', file_types=[".json", ".txt"])
- with gr.Column():
- gr.Markdown('Download')
- download = gr.File()
- buttons["Download"] = gr.Button(value="Click me")
- with gr.Tab('Upload character'):
- with gr.Row():
- with gr.Column():
- gr.Markdown('1. Select the JSON file')
- upload_char = gr.File(type='binary', file_types=[".json"])
- with gr.Column():
- gr.Markdown('2. Select your character\'s profile picture (optional)')
- upload_img = gr.File(type='binary', file_types=["image"])
- buttons["Upload character"] = gr.Button(value="Submit")
- with gr.Tab('Upload your profile picture'):
- upload_img_me = gr.File(type='binary', file_types=["image"])
- with gr.Tab('Upload TavernAI Character Card'):
- upload_img_tavern = gr.File(type='binary', file_types=["image"])
- with gr.Tab("Generation settings"):
- with gr.Row():
- with gr.Column():
- max_new_tokens = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
- with gr.Column():
- chat_prompt_size_slider = gr.Slider(minimum=settings['chat_prompt_size_min'], maximum=settings['chat_prompt_size_max'], step=1, label='Maximum prompt size in tokens', value=settings['chat_prompt_size'])
- preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping = create_settings_menus()
- if shared.args.extensions is not None:
- with gr.Tab("Extensions"):
- create_extensions_block()
- input_params = [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size_slider]
- if shared.args.picture:
- input_params.append(picture_select)
- function_call = "chat.cai_chatbot_wrapper" if shared.args.cai_chat else "chat.chatbot_wrapper"
- gen_events.append(buttons["Generate"].click(eval(function_call), input_params, display, show_progress=shared.args.no_stream, api_name="textgen"))
- gen_events.append(textbox.submit(eval(function_call), input_params, display, show_progress=shared.args.no_stream))
- if shared.args.picture:
- picture_select.upload(eval(function_call), input_params, display, show_progress=shared.args.no_stream)
- gen_events.append(buttons["Regenerate"].click(chat.regenerate_wrapper, input_params, display, show_progress=shared.args.no_stream))
- gen_events.append(buttons["Impersonate"].click(chat.impersonate_wrapper, input_params, textbox, show_progress=shared.args.no_stream))
- buttons["Stop"].click(chat.stop_everything_event, [], [], cancels=gen_events)
- buttons["Send last reply to input"].click(chat.send_last_reply_to_input, [], textbox, show_progress=shared.args.no_stream)
- buttons["Replace last reply"].click(chat.replace_last_reply, [textbox, name1, name2], display, show_progress=shared.args.no_stream)
- buttons["Clear history"].click(chat.clear_chat_log, [character_menu, name1, name2], display)
- buttons["Remove last"].click(chat.remove_last_message, [name1, name2], [display, textbox], show_progress=False)
- buttons["Download"].click(chat.save_history, inputs=[], outputs=[download])
- buttons["Upload character"].click(chat.upload_character, [upload_char, upload_img], [character_menu])
- # Clearing stuff and saving the history
- for i in ["Generate", "Regenerate", "Replace last reply"]:
- buttons[i].click(lambda x: "", textbox, textbox, show_progress=False)
- buttons[i].click(lambda : chat.save_history(timestamp=False), [], [], show_progress=False)
- buttons["Clear history"].click(lambda : chat.save_history(timestamp=False), [], [], show_progress=False)
- textbox.submit(lambda x: "", textbox, textbox, show_progress=False)
- textbox.submit(lambda : chat.save_history(timestamp=False), [], [], show_progress=False)
- character_menu.change(chat.load_character, [character_menu, name1, name2], [name2, context, display])
- upload_chat_history.upload(chat.load_history, [upload_chat_history, name1, name2], [])
- upload_img_tavern.upload(chat.upload_tavern_character, [upload_img_tavern, name1, name2], [character_menu])
- upload_img_me.upload(chat.upload_your_profile_picture, [upload_img_me], [])
- if shared.args.picture:
- picture_select.upload(lambda : None, [], [picture_select], show_progress=False)
- if shared.args.cai_chat:
- upload_chat_history.upload(chat.redraw_html, [name1, name2], [display])
- upload_img_me.upload(chat.redraw_html, [name1, name2], [display])
- else:
- upload_chat_history.upload(lambda : chat.history['visible'], [], [display])
- upload_img_me.upload(lambda : chat.history['visible'], [], [display])
- elif shared.args.notebook:
- with gr.Blocks(css=css, analytics_enabled=False) as interface:
- gr.Markdown(description)
- with gr.Tab('Raw'):
- textbox = gr.Textbox(value=default_text, lines=23)
- with gr.Tab('Markdown'):
- markdown = gr.Markdown()
- with gr.Tab('HTML'):
- html = gr.HTML()
- buttons["Generate"] = gr.Button("Generate")
- buttons["Stop"] = gr.Button("Stop")
- max_new_tokens = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
- preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping = create_settings_menus()
- if shared.args.extensions is not None:
- create_extensions_block()
- gen_events.append(buttons["Generate"].click(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [textbox, markdown, html], show_progress=shared.args.no_stream, api_name="textgen"))
- gen_events.append(textbox.submit(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [textbox, markdown, html], show_progress=shared.args.no_stream))
- buttons["Stop"].click(None, None, None, cancels=gen_events)
- else:
- with gr.Blocks(css=css, analytics_enabled=False) as interface:
- gr.Markdown(description)
- with gr.Row():
- with gr.Column():
- textbox = gr.Textbox(value=default_text, lines=15, label='Input')
- max_new_tokens = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
- buttons["Generate"] = gr.Button("Generate")
- with gr.Row():
- with gr.Column():
- buttons["Continue"] = gr.Button("Continue")
- with gr.Column():
- buttons["Stop"] = gr.Button("Stop")
- preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping = create_settings_menus()
- if shared.args.extensions is not None:
- create_extensions_block()
- with gr.Column():
- with gr.Tab('Raw'):
- output_textbox = gr.Textbox(lines=15, label='Output')
- with gr.Tab('Markdown'):
- markdown = gr.Markdown()
- with gr.Tab('HTML'):
- html = gr.HTML()
- gen_events.append(buttons["Generate"].click(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [output_textbox, markdown, html], show_progress=shared.args.no_stream, api_name="textgen"))
- gen_events.append(textbox.submit(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [output_textbox, markdown, html], show_progress=shared.args.no_stream))
- gen_events.append(buttons["Continue"].click(generate_reply, [output_textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [output_textbox, markdown, html], show_progress=shared.args.no_stream))
- buttons["Stop"].click(None, None, None, cancels=gen_events)
- interface.queue()
- if shared.args.listen:
- interface.launch(prevent_thread_lock=True, share=shared.args.share, server_name="0.0.0.0", server_port=shared.args.listen_port)
- else:
- interface.launch(prevent_thread_lock=True, share=shared.args.share, server_port=shared.args.listen_port)
- # I think that I will need this later
- while True:
- time.sleep(0.5)
|