prompt.py 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174
  1. import time
  2. import modules.shared as shared
  3. import torch
  4. import transformers
  5. from modules.extensions import apply_extensions
  6. from modules.html_generator import *
  7. from modules.stopping_criteria import _SentinelTokenStoppingCriteria
  8. from tqdm import tqdm
  9. def get_max_prompt_length(tokens):
  10. max_length = 2048-tokens
  11. if shared.soft_prompt:
  12. max_length -= shared.soft_prompt_tensor.shape[1]
  13. return max_length
  14. def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
  15. input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
  16. if shared.args.cpu or shared.args.flexgen:
  17. return input_ids
  18. elif shared.args.deepspeed:
  19. return input_ids.to(device=local_rank)
  20. else:
  21. return input_ids.cuda()
  22. def decode(output_ids):
  23. reply = shared.tokenizer.decode(output_ids, skip_special_tokens=True)
  24. reply = reply.replace(r'<|endoftext|>', '')
  25. return reply
  26. def generate_softprompt_input_tensors(input_ids):
  27. inputs_embeds = shared.model.transformer.wte(input_ids)
  28. inputs_embeds = torch.cat((shared.soft_prompt_tensor, inputs_embeds), dim=1)
  29. filler_input_ids = torch.zeros((1, inputs_embeds.shape[1]), dtype=input_ids.dtype).to(shared.model.device)
  30. filler_input_ids += shared.model.config.bos_token_id # setting dummy input_ids to bos tokens
  31. return inputs_embeds, filler_input_ids
  32. # Removes empty replies from gpt4chan outputs
  33. def fix_gpt4chan(s):
  34. for i in range(10):
  35. s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
  36. s = re.sub("--- [0-9]*\n *\n---", "---", s)
  37. s = re.sub("--- [0-9]*\n\n\n---", "---", s)
  38. return s
  39. # Fix the LaTeX equations in galactica
  40. def fix_galactica(s):
  41. s = s.replace(r'\[', r'$')
  42. s = s.replace(r'\]', r'$')
  43. s = s.replace(r'\(', r'$')
  44. s = s.replace(r'\)', r'$')
  45. s = s.replace(r'$$', r'$')
  46. s = re.sub(r'\n', r'\n\n', s)
  47. s = re.sub(r"\n{3,}", "\n\n", s)
  48. return s
  49. def formatted_outputs(reply, model_name):
  50. if not (shared.args.chat or shared.args.cai_chat):
  51. if shared.model_name.lower().startswith('galactica'):
  52. reply = fix_galactica(reply)
  53. return reply, reply, generate_basic_html(reply)
  54. elif shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')):
  55. reply = fix_gpt4chan(reply)
  56. return reply, 'Only applicable for GALACTICA models.', generate_4chan_html(reply)
  57. else:
  58. return reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply)
  59. else:
  60. return reply
  61. def generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None):
  62. original_question = question
  63. if not (shared.args.chat or shared.args.cai_chat):
  64. question = apply_extensions(question, "input")
  65. if shared.args.verbose:
  66. print(f"\n\n{question}\n--------------------\n")
  67. input_ids = encode(question, tokens)
  68. cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()"
  69. if not shared.args.flexgen:
  70. n = shared.tokenizer.eos_token_id if eos_token is None else shared.tokenizer.encode(eos_token, return_tensors='pt')[0][-1]
  71. else:
  72. n = shared.tokenizer(eos_token).input_ids[0] if eos_token else None
  73. if stopping_string is not None:
  74. # The stopping_criteria code below was copied from
  75. # https://github.com/PygmalionAI/gradio-ui/blob/master/src/model.py
  76. t = encode(stopping_string, 0, add_special_tokens=False)
  77. stopping_criteria_list = transformers.StoppingCriteriaList([
  78. _SentinelTokenStoppingCriteria(
  79. sentinel_token_ids=t,
  80. starting_idx=len(input_ids[0])
  81. )
  82. ])
  83. else:
  84. stopping_criteria_list = None
  85. if not shared.args.flexgen:
  86. generate_params = [
  87. f"eos_token_id={n}",
  88. f"stopping_criteria=stopping_criteria_list",
  89. f"do_sample={do_sample}",
  90. f"temperature={temperature}",
  91. f"top_p={top_p}",
  92. f"typical_p={typical_p}",
  93. f"repetition_penalty={repetition_penalty}",
  94. f"top_k={top_k}",
  95. f"min_length={min_length if shared.args.no_stream else 0}",
  96. f"no_repeat_ngram_size={no_repeat_ngram_size}",
  97. f"num_beams={num_beams}",
  98. f"penalty_alpha={penalty_alpha}",
  99. f"length_penalty={length_penalty}",
  100. f"early_stopping={early_stopping}",
  101. ]
  102. else:
  103. generate_params = [
  104. f"do_sample={do_sample}",
  105. f"temperature={temperature}",
  106. f"stop={n}",
  107. ]
  108. if shared.args.deepspeed:
  109. generate_params.append("synced_gpus=True")
  110. if shared.args.no_stream:
  111. generate_params.append(f"max_new_tokens=tokens")
  112. else:
  113. generate_params.append(f"max_new_tokens=8")
  114. if shared.soft_prompt:
  115. inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
  116. generate_params.insert(0, "inputs_embeds=inputs_embeds")
  117. generate_params.insert(0, "filler_input_ids")
  118. else:
  119. generate_params.insert(0, "input_ids")
  120. # Generate the entire reply at once
  121. if shared.args.no_stream:
  122. t0 = time.time()
  123. with torch.no_grad():
  124. output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
  125. if shared.soft_prompt:
  126. output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
  127. reply = decode(output)
  128. if not (shared.args.chat or shared.args.cai_chat):
  129. reply = original_question + apply_extensions(reply[len(question):], "output")
  130. yield formatted_outputs(reply, shared.model_name)
  131. t1 = time.time()
  132. print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0)/8:.2f} it/s, {len(output)-len(input_ids[0])} tokens)")
  133. # Generate the reply 8 tokens at a time
  134. else:
  135. yield formatted_outputs(original_question, shared.model_name)
  136. for i in tqdm(range(tokens//8+1)):
  137. with torch.no_grad():
  138. output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
  139. if shared.soft_prompt:
  140. output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
  141. reply = decode(output)
  142. if not (shared.args.chat or shared.args.cai_chat):
  143. reply = original_question + apply_extensions(reply[len(question):], "output")
  144. yield formatted_outputs(reply, shared.model_name)
  145. if not shared.args.flexgen:
  146. input_ids = torch.reshape(output, (1, output.shape[0]))
  147. else:
  148. input_ids = np.reshape(output, (1, output.shape[0]))
  149. if shared.soft_prompt:
  150. inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
  151. if output[-1] == n:
  152. break