| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241 |
- import re
- import time
- import glob
- from sys import exit
- import torch
- import argparse
- from pathlib import Path
- import gradio as gr
- import transformers
- from html_generator import *
- from transformers import AutoTokenizer, T5Tokenizer
- from transformers import AutoModelForCausalLM, T5ForConditionalGeneration
- parser = argparse.ArgumentParser()
- parser.add_argument('--model', type=str, help='Name of the model to load by default.')
- parser.add_argument('--notebook', action='store_true', help='Launch the webui in notebook mode, where the output is written to the same text box as the input.')
- parser.add_argument('--chat', action='store_true', help='Launch the webui in chat mode.')
- parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
- args = parser.parse_args()
- loaded_preset = None
- available_models = sorted(set(map(lambda x : str(x.name).replace('.pt', ''), list(Path('models/').glob('*'))+list(Path('torch-dumps/').glob('*')))))
- available_models = [item for item in available_models if not item.endswith('.txt')]
- available_presets = sorted(set(map(lambda x : str(x.name).split('.')[0], list(Path('presets').glob('*.txt')))))
- def load_model(model_name):
- print(f"Loading {model_name}...")
- t0 = time.time()
- if args.cpu:
- dtype = torch.float32
- else:
- dtype = torch.float16
- # Loading the model
- if not args.cpu and Path(f"torch-dumps/{model_name}.pt").exists():
- print("Loading in .pt format...")
- model = torch.load(Path(f"torch-dumps/{model_name}.pt"))
- elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')):
- if any(size in model_name.lower() for size in ('13b', '20b', '30b')):
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True)
- else:
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=dtype)
- elif model_name in ['flan-t5', 't5-large']:
- model = T5ForConditionalGeneration.from_pretrained(Path(f"models/{model_name}"))
- else:
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=dtype)
- # Loading the tokenizer
- if model_name.lower().startswith('gpt4chan') and Path(f"models/gpt-j-6B/").exists():
- tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
- elif model_name in ['flan-t5', 't5-large']:
- tokenizer = T5Tokenizer.from_pretrained(Path(f"models/{model_name}/"))
- else:
- tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{model_name}/"))
- # Sending to the GPU
- if not (args.cpu or any(size in model_name.lower() for size in ('13b', '20b', '30b'))):
- model = model.cuda()
- print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
- return model, tokenizer
- # Removes empty replies from gpt4chan outputs
- def fix_gpt4chan(s):
- for i in range(10):
- s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
- s = re.sub("--- [0-9]*\n *\n---", "---", s)
- s = re.sub("--- [0-9]*\n\n\n---", "---", s)
- return s
- def fix_galactica(s):
- s = s.replace(r'\[', r'$')
- s = s.replace(r'\]', r'$')
- s = s.replace(r'\(', r'$')
- s = s.replace(r'\)', r'$')
- s = s.replace(r'$$', r'$')
- return s
- def generate_reply(question, temperature, max_length, inference_settings, selected_model, eos_token=None):
- global model, tokenizer, model_name, loaded_preset, preset
- if selected_model != model_name:
- model_name = selected_model
- model = None
- tokenizer = None
- if not args.cpu:
- torch.cuda.empty_cache()
- model, tokenizer = load_model(model_name)
- if inference_settings != loaded_preset:
- with open(Path(f'presets/{inference_settings}.txt'), 'r') as infile:
- preset = infile.read()
- loaded_preset = inference_settings
- if not args.cpu:
- torch.cuda.empty_cache()
- input_ids = tokenizer.encode(str(question), return_tensors='pt').cuda()
- cuda = ".cuda()"
- else:
- input_ids = tokenizer.encode(str(question), return_tensors='pt')
- cuda = ""
- if eos_token is None:
- output = eval(f"model.generate(input_ids, {preset}){cuda}")
- else:
- n = tokenizer.encode(eos_token, return_tensors='pt')[0][-1]
- output = eval(f"model.generate(input_ids, eos_token_id={n}, {preset}){cuda}")
- reply = tokenizer.decode(output[0], skip_special_tokens=True)
- if model_name.lower().startswith('galactica'):
- reply = fix_galactica(reply)
- return reply, reply, 'Only applicable for gpt4chan.'
- elif model_name.lower().startswith('gpt4chan'):
- reply = fix_gpt4chan(reply)
- return reply, 'Only applicable for galactica models.', generate_html(reply)
- else:
- return reply, 'Only applicable for galactica models.', 'Only applicable for gpt4chan.'
- # Choosing the default model
- if args.model is not None:
- model_name = args.model
- else:
- if len(available_models) == 0:
- print("No models are available! Please download at least one.")
- exit(0)
- elif len(available_models) == 1:
- i = 0
- else:
- print("The following models are available:\n")
- for i,model in enumerate(available_models):
- print(f"{i+1}. {model}")
- print(f"\nWhich one do you want to load? 1-{len(available_models)}\n")
- i = int(input())-1
- print()
- model_name = available_models[i]
- model, tokenizer = load_model(model_name)
- # UI settings
- if model_name.lower().startswith('gpt4chan'):
- default_text = "-----\n--- 865467536\nInput text\n--- 865467537\n"
- else:
- default_text = "Common sense questions and answers\n\nQuestion: \nFactual answer:"
- description = f"""
- # Text generation lab
- Generate text using Large Language Models.
- """
- css=".my-4 {margin-top: 0} .py-6 {padding-top: 2.5rem}"
- if args.notebook:
- with gr.Blocks(css=css, analytics_enabled=False) as interface:
- gr.Markdown(description)
- with gr.Tab('Raw'):
- textbox = gr.Textbox(value=default_text, lines=23)
- with gr.Tab('Markdown'):
- markdown = gr.Markdown()
- with gr.Tab('HTML'):
- html = gr.HTML()
- btn = gr.Button("Generate")
- with gr.Row():
- with gr.Column():
- length_slider = gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200)
- temp_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7)
- with gr.Column():
- preset_menu = gr.Dropdown(choices=available_presets, value="NovelAI-Sphinx Moth", label='Preset')
- model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
- btn.click(generate_reply, [textbox, temp_slider, length_slider, preset_menu, model_menu], [textbox, markdown, html], show_progress=True)
- textbox.submit(generate_reply, [textbox, temp_slider, length_slider, preset_menu, model_menu], [textbox, markdown, html], show_progress=True)
- elif args.chat:
- history = []
- def chatbot(text, temperature, max_length, inference_settings, selected_model, name1, name2, context):
- question = context+'\n\n'
- for i in range(len(history)):
- question += f"{name1}: {history[i][0][3:-5].strip()}\n"
- question += f"{name2}: {history[i][1][3:-5].strip()}\n"
- question += f"{name1}: {text.strip()}\n"
- question += f"{name2}:"
- reply = generate_reply(question, temperature, max_length, inference_settings, selected_model, eos_token='\n')[0]
- reply = reply[len(question):].split('\n')[0].strip()
- history.append((text, reply))
- return history
- def clear():
- global history
- history = []
- with gr.Blocks(css=css+".h-\[40vh\] {height: 50vh}", analytics_enabled=False) as interface:
- gr.Markdown(description)
- with gr.Row(equal_height=True):
- with gr.Column():
- with gr.Row(equal_height=True):
- with gr.Column():
- length_slider = gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200)
- preset_menu = gr.Dropdown(choices=available_presets, value="NovelAI-Sphinx Moth", label='Preset')
- with gr.Column():
- temp_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7)
- model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
- name1 = gr.Textbox(value='Person 1', lines=1, label='Your name')
- name2 = gr.Textbox(value='Person 2', lines=1, label='Bot\'s name')
- context = gr.Textbox(value='This is a conversation between two people.', lines=2, label='Context')
- with gr.Column():
- display1 = gr.Chatbot()
- textbox = gr.Textbox(lines=2, label='Input')
- btn = gr.Button("Generate")
- btn2 = gr.Button("Clear history")
- btn.click(chatbot, [textbox, temp_slider, length_slider, preset_menu, model_menu, name1, name2, context], display1, show_progress=True)
- textbox.submit(chatbot, [textbox, temp_slider, length_slider, preset_menu, model_menu, name1, name2, context], display1, show_progress=True)
- btn2.click(clear)
- btn.click(lambda x: "", textbox, textbox, show_progress=False)
- textbox.submit(lambda x: "", textbox, textbox, show_progress=False)
- btn2.click(lambda x: "", display1, display1)
- else:
- with gr.Blocks(css=css, analytics_enabled=False) as interface:
- gr.Markdown(description)
- with gr.Row():
- with gr.Column():
- textbox = gr.Textbox(value=default_text, lines=15, label='Input')
- temp_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7)
- length_slider = gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200)
- preset_menu = gr.Dropdown(choices=available_presets, value="NovelAI-Sphinx Moth", label='Preset')
- model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
- btn = gr.Button("Generate")
- with gr.Column():
- with gr.Tab('Raw'):
- output_textbox = gr.Textbox(value=default_text, lines=15, label='Output')
- with gr.Tab('Markdown'):
- markdown = gr.Markdown()
- with gr.Tab('HTML'):
- html = gr.HTML()
- btn.click(generate_reply, [textbox, temp_slider, length_slider, preset_menu, model_menu], [output_textbox, markdown, html], show_progress=True)
- textbox.submit(generate_reply, [textbox, temp_slider, length_slider, preset_menu, model_menu], [output_textbox, markdown, html], show_progress=True)
- interface.launch(share=False, server_name="0.0.0.0")
|