| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- import os
- import re
- import time
- import glob
- import torch
- import gradio as gr
- import transformers
- from transformers import AutoTokenizer
- from transformers import GPTJForCausalLM, AutoModelForCausalLM, AutoModelForSeq2SeqLM, OPTForCausalLM, T5Tokenizer, T5ForConditionalGeneration, GPTJModel, AutoModel
- #model_name = "bloomz-7b1-p3"
- #model_name = 'gpt-j-6B-float16'
- #model_name = "opt-6.7b"
- #model_name = 'opt-13b'
- #model_name = "gpt4chan_model_float16"
- model_name = 'galactica-6.7b'
- #model_name = 'gpt-neox-20b'
- #model_name = 'flan-t5'
- #model_name = 'OPT-13B-Erebus'
- loaded_preset = None
- def load_model(model_name):
- print(f"Loading {model_name}...")
- t0 = time.time()
- if os.path.exists(f"torch-dumps/{model_name}.pt"):
- print("Loading in .pt format...")
- model = torch.load(f"torch-dumps/{model_name}.pt").cuda()
- elif model_name.lower().startswith(('gpt-neo', 'opt-')):
- model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", device_map='auto', load_in_8bit=True)
- elif model_name in ['gpt-j-6B']:
- model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
- elif model_name in ['flan-t5', 't5-large']:
- model = T5ForConditionalGeneration.from_pretrained(f"models/{model_name}").cuda()
- if model_name in ['gpt4chan_model_float16']:
- tokenizer = AutoTokenizer.from_pretrained("models/gpt-j-6B/")
- elif model_name in ['flan-t5']:
- tokenizer = T5Tokenizer.from_pretrained(f"models/{model_name}/")
- else:
- tokenizer = AutoTokenizer.from_pretrained(f"models/{model_name}/")
- print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
- return model, tokenizer
- # Removes empty replies from gpt4chan outputs
- def fix_gpt4chan(s):
- for i in range(10):
- s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
- s = re.sub("--- [0-9]*\n *\n---", "---", s)
- s = re.sub("--- [0-9]*\n\n\n---", "---", s)
- return s
- def generate_reply(question, temperature, max_length, inference_settings, selected_model):
- global model, tokenizer, model_name, loaded_preset, preset
- if selected_model != model_name:
- model_name = selected_model
- model = None
- tokenier = None
- torch.cuda.empty_cache()
- model, tokenizer = load_model(model_name)
- if inference_settings != loaded_preset:
- with open(f'presets/{inference_settings}.txt', 'r') as infile:
- preset = infile.read()
- loaded_preset = inference_settings
- torch.cuda.empty_cache()
- input_text = question
- input_ids = tokenizer.encode(str(input_text), return_tensors='pt').cuda()
- output = eval(f"model.generate(input_ids, {preset}).cuda()")
- reply = tokenizer.decode(output[0], skip_special_tokens=True)
- if model_name.startswith('gpt4chan'):
- reply = fix_gpt4chan(reply)
- return reply
- model, tokenizer = load_model(model_name)
- if model_name.startswith('gpt4chan'):
- default_text = "-----\n--- 865467536\nInput text\n--- 865467537\n"
- else:
- default_text = "Common sense questions and answers\n\nQuestion: \nFactual answer:"
- interface = gr.Interface(
- generate_reply,
- inputs=[
- gr.Textbox(value=default_text, lines=15),
- gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7),
- gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200),
- gr.Dropdown(choices=list(map(lambda x : x.split('/')[-1].split('.')[0], glob.glob("presets/*.txt"))), value="Default"),
- gr.Dropdown(choices=sorted(set(map(lambda x : x.split('/')[-1].replace('.pt', ''), glob.glob("models/*") + glob.glob("torch-dumps/*")))), value=model_name),
- ],
- outputs=[
- gr.Textbox(placeholder="", lines=15),
- ],
- title="Text generation lab",
- description=f"Generate text using Large Language Models.",
- )
- interface.launch(share=False, server_name="0.0.0.0")
|