| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280 |
- import gc
- import re
- import time
- import traceback
- import numpy as np
- import torch
- import transformers
- import modules.shared as shared
- from modules.callbacks import (Iteratorize, Stream,
- _SentinelTokenStoppingCriteria)
- from modules.extensions import apply_extensions
- from modules.html_generator import generate_4chan_html, generate_basic_html
- from modules.models import local_rank
- def get_max_prompt_length(tokens):
- max_length = 2048-tokens
- if shared.soft_prompt:
- max_length -= shared.soft_prompt_tensor.shape[1]
- return max_length
- def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
- if any((shared.is_RWKV, shared.is_llamacpp)):
- input_ids = shared.tokenizer.encode(str(prompt))
- input_ids = np.array(input_ids).reshape(1, len(input_ids))
- return input_ids
- else:
- input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
- if shared.args.cpu:
- return input_ids
- elif shared.args.flexgen:
- return input_ids.numpy()
- elif shared.args.deepspeed:
- return input_ids.to(device=local_rank)
- elif torch.has_mps:
- device = torch.device('mps')
- return input_ids.to(device)
- else:
- return input_ids.cuda()
- def decode(output_ids):
- # Open Assistant relies on special tokens like <|endoftext|>
- if re.match('.*(oasst|galactica)-*', shared.model_name.lower()):
- return shared.tokenizer.decode(output_ids, skip_special_tokens=False)
- else:
- reply = shared.tokenizer.decode(output_ids, skip_special_tokens=True)
- reply = reply.replace(r'<|endoftext|>', '')
- return reply
- def generate_softprompt_input_tensors(input_ids):
- inputs_embeds = shared.model.transformer.wte(input_ids)
- inputs_embeds = torch.cat((shared.soft_prompt_tensor, inputs_embeds), dim=1)
- filler_input_ids = torch.zeros((1, inputs_embeds.shape[1]), dtype=input_ids.dtype).to(shared.model.device)
- #filler_input_ids += shared.model.config.bos_token_id # setting dummy input_ids to bos tokens
- return inputs_embeds, filler_input_ids
- # Removes empty replies from gpt4chan outputs
- def fix_gpt4chan(s):
- for i in range(10):
- s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
- s = re.sub("--- [0-9]*\n *\n---", "---", s)
- s = re.sub("--- [0-9]*\n\n\n---", "---", s)
- return s
- # Fix the LaTeX equations in galactica
- def fix_galactica(s):
- s = s.replace(r'\[', r'$')
- s = s.replace(r'\]', r'$')
- s = s.replace(r'\(', r'$')
- s = s.replace(r'\)', r'$')
- s = s.replace(r'$$', r'$')
- s = re.sub(r'\n', r'\n\n', s)
- s = re.sub(r"\n{3,}", "\n\n", s)
- return s
- def formatted_outputs(reply, model_name):
- if not (shared.args.chat or shared.args.cai_chat):
- if 'galactica' in model_name.lower():
- reply = fix_galactica(reply)
- return reply, reply, generate_basic_html(reply)
- elif any((k in shared.model_name.lower() for k in ['gpt4chan', 'gpt-4chan'])):
- reply = fix_gpt4chan(reply)
- return reply, 'Only applicable for GALACTICA models.', generate_4chan_html(reply)
- else:
- return reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply)
- else:
- return reply
- def clear_torch_cache():
- gc.collect()
- if not shared.args.cpu:
- torch.cuda.empty_cache()
- def set_manual_seed(seed):
- if seed != -1:
- torch.manual_seed(seed)
- if torch.cuda.is_available():
- torch.cuda.manual_seed_all(seed)
- def stop_everything_event():
- shared.stop_everything = True
- def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, eos_token=None, stopping_strings=[]):
- clear_torch_cache()
- set_manual_seed(seed)
- shared.stop_everything = False
- t0 = time.time()
- original_question = question
- if not (shared.args.chat or shared.args.cai_chat):
- question = apply_extensions(question, "input")
- if shared.args.verbose:
- print(f"\n\n{question}\n--------------------\n")
- # These models are not part of Hugging Face, so we handle them
- # separately and terminate the function call earlier
- if any((shared.is_RWKV, shared.is_llamacpp)):
- try:
- if shared.args.no_stream:
- reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty)
- output = original_question+reply
- if not (shared.args.chat or shared.args.cai_chat):
- reply = original_question + apply_extensions(reply, "output")
- yield formatted_outputs(reply, shared.model_name)
- else:
- if not (shared.args.chat or shared.args.cai_chat):
- yield formatted_outputs(question, shared.model_name)
- # RWKV has proper streaming, which is very nice.
- # No need to generate 8 tokens at a time.
- for reply in shared.model.generate_with_streaming(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k):
- output = original_question+reply
- if not (shared.args.chat or shared.args.cai_chat):
- reply = original_question + apply_extensions(reply, "output")
- yield formatted_outputs(reply, shared.model_name)
- except Exception:
- traceback.print_exc()
- finally:
- t1 = time.time()
- original_tokens = len(encode(original_question)[0])
- new_tokens = len(encode(output)[0]) - original_tokens
- print(f"Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens})")
- return
- input_ids = encode(question, max_new_tokens)
- original_input_ids = input_ids
- output = input_ids[0]
- cuda = not any((shared.args.cpu, shared.args.deepspeed, shared.args.flexgen))
- eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else []
- if eos_token is not None:
- eos_token_ids.append(int(encode(eos_token)[0][-1]))
- stopping_criteria_list = transformers.StoppingCriteriaList()
- if type(stopping_strings) is list and len(stopping_strings) > 0:
- t = [encode(string, 0, add_special_tokens=False) for string in stopping_strings]
- stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=t, starting_idx=len(input_ids[0])))
- generate_params = {}
- if not shared.args.flexgen:
- generate_params.update({
- "max_new_tokens": max_new_tokens,
- "eos_token_id": eos_token_ids,
- "stopping_criteria": stopping_criteria_list,
- "do_sample": do_sample,
- "temperature": temperature,
- "top_p": top_p,
- "typical_p": typical_p,
- "repetition_penalty": repetition_penalty,
- "encoder_repetition_penalty": encoder_repetition_penalty,
- "top_k": top_k,
- "min_length": min_length if shared.args.no_stream else 0,
- "no_repeat_ngram_size": no_repeat_ngram_size,
- "num_beams": num_beams,
- "penalty_alpha": penalty_alpha,
- "length_penalty": length_penalty,
- "early_stopping": early_stopping,
- })
- else:
- generate_params.update({
- "max_new_tokens": max_new_tokens if shared.args.no_stream else 8,
- "do_sample": do_sample,
- "temperature": temperature,
- "stop": eos_token_ids[-1],
- })
- if shared.args.no_cache:
- generate_params.update({"use_cache": False})
- if shared.args.deepspeed:
- generate_params.update({"synced_gpus": True})
- if shared.soft_prompt:
- inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
- generate_params.update({"inputs_embeds": inputs_embeds})
- generate_params.update({"inputs": filler_input_ids})
- else:
- generate_params.update({"inputs": input_ids})
- try:
- # Generate the entire reply at once.
- if shared.args.no_stream:
- with torch.no_grad():
- output = shared.model.generate(**generate_params)[0]
- if cuda:
- output = output.cuda()
- if shared.soft_prompt:
- output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
- new_tokens = len(output) - len(input_ids[0])
- reply = decode(output[-new_tokens:])
- if not (shared.args.chat or shared.args.cai_chat):
- reply = original_question + apply_extensions(reply, "output")
- yield formatted_outputs(reply, shared.model_name)
- # Stream the reply 1 token at a time.
- # This is based on the trick of using 'stopping_criteria' to create an iterator.
- elif not shared.args.flexgen:
- def generate_with_callback(callback=None, **kwargs):
- kwargs['stopping_criteria'].append(Stream(callback_func=callback))
- clear_torch_cache()
- with torch.no_grad():
- shared.model.generate(**kwargs)
- def generate_with_streaming(**kwargs):
- return Iteratorize(generate_with_callback, kwargs, callback=None)
- if not (shared.args.chat or shared.args.cai_chat):
- yield formatted_outputs(original_question, shared.model_name)
- with generate_with_streaming(**generate_params) as generator:
- for output in generator:
- if shared.soft_prompt:
- output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
- new_tokens = len(output) - len(input_ids[0])
- reply = decode(output[-new_tokens:])
- if not (shared.args.chat or shared.args.cai_chat):
- reply = original_question + apply_extensions(reply, "output")
- if output[-1] in eos_token_ids:
- break
- yield formatted_outputs(reply, shared.model_name)
- # Stream the output naively for FlexGen since it doesn't support 'stopping_criteria'
- else:
- for i in range(max_new_tokens//8+1):
- clear_torch_cache()
- with torch.no_grad():
- output = shared.model.generate(**generate_params)[0]
- if shared.soft_prompt:
- output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
- new_tokens = len(output) - len(original_input_ids[0])
- reply = decode(output[-new_tokens:])
- if not (shared.args.chat or shared.args.cai_chat):
- reply = original_question + apply_extensions(reply, "output")
- if np.count_nonzero(np.isin(input_ids[0], eos_token_ids)) < np.count_nonzero(np.isin(output, eos_token_ids)):
- break
- yield formatted_outputs(reply, shared.model_name)
- input_ids = np.reshape(output, (1, output.shape[0]))
- if shared.soft_prompt:
- inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
- generate_params.update({"inputs_embeds": inputs_embeds})
- generate_params.update({"inputs": filler_input_ids})
- else:
- generate_params.update({"inputs": input_ids})
- yield formatted_outputs(reply, shared.model_name)
- except Exception:
- traceback.print_exc()
- finally:
- t1 = time.time()
- original_tokens = len(original_input_ids[0])
- new_tokens = len(output)-original_tokens
- print(f"Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens})")
- return
|