text_generation.py 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207
  1. import gc
  2. import re
  3. import time
  4. import numpy as np
  5. import torch
  6. import transformers
  7. from tqdm import tqdm
  8. import modules.shared as shared
  9. from modules.extensions import apply_extensions
  10. from modules.html_generator import generate_4chan_html, generate_basic_html
  11. from modules.models import local_rank
  12. from modules.stopping_criteria import _SentinelTokenStoppingCriteria
  13. def get_max_prompt_length(tokens):
  14. max_length = 2048-tokens
  15. if shared.soft_prompt:
  16. max_length -= shared.soft_prompt_tensor.shape[1]
  17. return max_length
  18. def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
  19. if shared.is_RWKV:
  20. input_ids = shared.tokenizer.encode(str(prompt))
  21. input_ids = np.array(input_ids).reshape(1, len(input_ids))
  22. else:
  23. input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
  24. if shared.args.cpu:
  25. return input_ids
  26. elif shared.args.flexgen:
  27. return input_ids.numpy()
  28. elif shared.args.deepspeed:
  29. return input_ids.to(device=local_rank)
  30. else:
  31. return input_ids.cuda()
  32. def decode(output_ids):
  33. reply = shared.tokenizer.decode(output_ids, skip_special_tokens=True)
  34. reply = reply.replace(r'<|endoftext|>', '')
  35. return reply
  36. def generate_softprompt_input_tensors(input_ids):
  37. inputs_embeds = shared.model.transformer.wte(input_ids)
  38. inputs_embeds = torch.cat((shared.soft_prompt_tensor, inputs_embeds), dim=1)
  39. filler_input_ids = torch.zeros((1, inputs_embeds.shape[1]), dtype=input_ids.dtype).to(shared.model.device)
  40. #filler_input_ids += shared.model.config.bos_token_id # setting dummy input_ids to bos tokens
  41. return inputs_embeds, filler_input_ids
  42. # Removes empty replies from gpt4chan outputs
  43. def fix_gpt4chan(s):
  44. for i in range(10):
  45. s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
  46. s = re.sub("--- [0-9]*\n *\n---", "---", s)
  47. s = re.sub("--- [0-9]*\n\n\n---", "---", s)
  48. return s
  49. # Fix the LaTeX equations in galactica
  50. def fix_galactica(s):
  51. s = s.replace(r'\[', r'$')
  52. s = s.replace(r'\]', r'$')
  53. s = s.replace(r'\(', r'$')
  54. s = s.replace(r'\)', r'$')
  55. s = s.replace(r'$$', r'$')
  56. s = re.sub(r'\n', r'\n\n', s)
  57. s = re.sub(r"\n{3,}", "\n\n", s)
  58. return s
  59. def formatted_outputs(reply, model_name):
  60. if not (shared.args.chat or shared.args.cai_chat):
  61. if model_name.lower().startswith('galactica'):
  62. reply = fix_galactica(reply)
  63. return reply, reply, generate_basic_html(reply)
  64. elif model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')):
  65. reply = fix_gpt4chan(reply)
  66. return reply, 'Only applicable for GALACTICA models.', generate_4chan_html(reply)
  67. else:
  68. return reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply)
  69. else:
  70. return reply
  71. def clear_torch_cache():
  72. gc.collect()
  73. if not shared.args.cpu:
  74. torch.cuda.empty_cache()
  75. def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None):
  76. clear_torch_cache()
  77. t0 = time.time()
  78. # These models are not part of Hugging Face, so we handle them
  79. # separately and terminate the function call earlier
  80. if shared.is_RWKV:
  81. if shared.args.no_stream:
  82. reply = shared.model.generate(question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k)
  83. t1 = time.time()
  84. print(f"Output generated in {(t1-t0):.2f} seconds.")
  85. yield formatted_outputs(reply, shared.model_name)
  86. else:
  87. yield formatted_outputs(question, shared.model_name)
  88. for i in tqdm(range(max_new_tokens//8+1)):
  89. clear_torch_cache()
  90. reply = shared.model.generate(question, token_count=8, temperature=temperature, top_p=top_p, top_k=top_k)
  91. yield formatted_outputs(reply, shared.model_name)
  92. question = reply
  93. return
  94. original_question = question
  95. if not (shared.args.chat or shared.args.cai_chat):
  96. question = apply_extensions(question, "input")
  97. if shared.args.verbose:
  98. print(f"\n\n{question}\n--------------------\n")
  99. input_ids = encode(question, max_new_tokens)
  100. cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()"
  101. n = shared.tokenizer.eos_token_id if eos_token is None else int(encode(eos_token)[0][-1])
  102. if stopping_string is not None:
  103. # The stopping_criteria code below was copied from
  104. # https://github.com/PygmalionAI/gradio-ui/blob/master/src/model.py
  105. t = encode(stopping_string, 0, add_special_tokens=False)
  106. stopping_criteria_list = transformers.StoppingCriteriaList([
  107. _SentinelTokenStoppingCriteria(
  108. sentinel_token_ids=t,
  109. starting_idx=len(input_ids[0])
  110. )
  111. ])
  112. else:
  113. stopping_criteria_list = None
  114. if not shared.args.flexgen:
  115. generate_params = [
  116. f"eos_token_id={n}",
  117. f"stopping_criteria=stopping_criteria_list",
  118. f"do_sample={do_sample}",
  119. f"temperature={temperature}",
  120. f"top_p={top_p}",
  121. f"typical_p={typical_p}",
  122. f"repetition_penalty={repetition_penalty}",
  123. f"top_k={top_k}",
  124. f"min_length={min_length if shared.args.no_stream else 0}",
  125. f"no_repeat_ngram_size={no_repeat_ngram_size}",
  126. f"num_beams={num_beams}",
  127. f"penalty_alpha={penalty_alpha}",
  128. f"length_penalty={length_penalty}",
  129. f"early_stopping={early_stopping}",
  130. ]
  131. else:
  132. generate_params = [
  133. f"do_sample={do_sample}",
  134. f"temperature={temperature}",
  135. f"stop={n}",
  136. ]
  137. if shared.args.deepspeed:
  138. generate_params.append("synced_gpus=True")
  139. if shared.args.no_stream:
  140. generate_params.append("max_new_tokens=max_new_tokens")
  141. else:
  142. generate_params.append("max_new_tokens=8")
  143. if shared.soft_prompt:
  144. inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
  145. generate_params.insert(0, "inputs_embeds=inputs_embeds")
  146. generate_params.insert(0, "filler_input_ids")
  147. else:
  148. generate_params.insert(0, "input_ids")
  149. # Generate the entire reply at once
  150. if shared.args.no_stream:
  151. with torch.no_grad():
  152. output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
  153. if shared.soft_prompt:
  154. output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
  155. reply = decode(output)
  156. if not (shared.args.chat or shared.args.cai_chat):
  157. reply = original_question + apply_extensions(reply[len(question):], "output")
  158. t1 = time.time()
  159. print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0)/8:.2f} it/s, {len(output)-len(input_ids[0])} tokens)")
  160. yield formatted_outputs(reply, shared.model_name)
  161. # Generate the reply 8 tokens at a time
  162. else:
  163. yield formatted_outputs(original_question, shared.model_name)
  164. for i in tqdm(range(max_new_tokens//8+1)):
  165. clear_torch_cache()
  166. with torch.no_grad():
  167. output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
  168. if shared.soft_prompt:
  169. output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
  170. reply = decode(output)
  171. if not (shared.args.chat or shared.args.cai_chat):
  172. reply = original_question + apply_extensions(reply[len(question):], "output")
  173. yield formatted_outputs(reply, shared.model_name)
  174. if not shared.args.flexgen:
  175. if output[-1] == n:
  176. break
  177. input_ids = torch.reshape(output, (1, output.shape[0]))
  178. else:
  179. if np.count_nonzero(input_ids[0] == n) < np.count_nonzero(output == n):
  180. break
  181. input_ids = np.reshape(output, (1, output.shape[0]))
  182. if shared.soft_prompt:
  183. inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)