| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214 |
- import json
- import os
- import sys
- import time
- import zipfile
- from pathlib import Path
- import numpy as np
- import torch
- import transformers
- from transformers import AutoModelForCausalLM, AutoTokenizer
- import modules.shared as shared
- transformers.logging.set_verbosity_error()
- local_rank = None
- if shared.args.flexgen:
- from flexgen.flex_opt import (CompressionConfig, ExecutionEnv, OptLM,
- Policy, str2bool)
- if shared.args.deepspeed:
- import deepspeed
- from transformers.deepspeed import (HfDeepSpeedConfig,
- is_deepspeed_zero3_enabled)
- from modules.deepspeed_parameters import generate_ds_config
- # Distributed setup
- local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
- world_size = int(os.getenv("WORLD_SIZE", "1"))
- torch.cuda.set_device(local_rank)
- deepspeed.init_distributed()
- ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
- dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
- def load_model(model_name):
- print(f"Loading {model_name}...")
- t0 = time.time()
- shared.is_RWKV = model_name.lower().startswith('rwkv-')
- # Default settings
- if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.llama_bits>0 or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen or shared.is_RWKV):
- if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
- else:
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16).cuda()
- # FlexGen
- elif shared.args.flexgen:
- # Initialize environment
- env = ExecutionEnv.create(shared.args.disk_cache_dir)
- # Offloading policy
- policy = Policy(1, 1,
- shared.args.percent[0], shared.args.percent[1],
- shared.args.percent[2], shared.args.percent[3],
- shared.args.percent[4], shared.args.percent[5],
- overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight,
- cpu_cache_compute=False, attn_sparsity=1.0,
- compress_weight=shared.args.compress_weight,
- comp_weight_config=CompressionConfig(
- num_bits=4, group_size=64,
- group_dim=0, symmetric=False),
- compress_cache=False,
- comp_cache_config=CompressionConfig(
- num_bits=4, group_size=64,
- group_dim=2, symmetric=False))
- model = OptLM(f"facebook/{shared.model_name}", env, "models", policy)
- # DeepSpeed ZeRO-3
- elif shared.args.deepspeed:
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
- model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
- model.module.eval() # Inference
- print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
- # RMKV model (not on HuggingFace)
- elif shared.is_RWKV:
- from modules.RWKV import RWKVModel, RWKVTokenizer
- model = RWKVModel.from_pretrained(Path(f'models/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
- tokenizer = RWKVTokenizer.from_pretrained(Path('models'))
- return model, tokenizer
- # 4-bit LLaMA
- elif shared.args.llama_bits>0 or shared.args.load_in_4bit:
- sys.path.insert(0, os.path.abspath(Path("repositories/GPTQ-for-LLaMa")))
- if shared.args.load_in_4bit:
- bits = 4
- else:
- bits = shared.args.llama_bits
-
- from llama import load_quant
- path_to_model = Path(f'models/{model_name}')
- pt_model = ''
- if path_to_model.name.lower().startswith('llama-7b'):
- pt_model = f'llama-7b-{bits}bit.pt'
- elif path_to_model.name.lower().startswith('llama-13b'):
- pt_model = f'llama-13b-{bits}bit.pt'
- elif path_to_model.name.lower().startswith('llama-30b'):
- pt_model = f'llama-30b-{bits}bit.pt'
- elif path_to_model.name.lower().startswith('llama-65b'):
- pt_model = f'llama-65b-{bits}bit.pt'
- else:
- pt_model = f'{model_name}-{bits}bit.pt'
- # Try to find the .pt both in models/ and in the subfolder
- pt_path = None
- for path in [Path(p) for p in [f"models/{pt_model}", f"{path_to_model}/{pt_model}"]]:
- if path.exists():
- pt_path = path
- if not pt_path:
- print(f"Could not find {pt_model}, exiting...")
- exit()
- model = load_quant(path_to_model, pt_path, bits)
- # Multi-GPU setup
- if shared.args.gpu_memory:
- import accelerate
- max_memory = {}
- for i in range(len(shared.args.gpu_memory)):
- max_memory[i] = f"{shared.args.gpu_memory[i]}GiB"
- max_memory['cpu'] = f"{shared.args.cpu_memory or '99'}GiB"
- device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LLaMADecoderLayer"])
- model = accelerate.dispatch_model(model, device_map=device_map)
- # Single GPU
- else:
- model = model.to(torch.device('cuda:0'))
- # Custom
- else:
- command = "AutoModelForCausalLM.from_pretrained"
- params = ["low_cpu_mem_usage=True"]
- if not shared.args.cpu and not torch.cuda.is_available():
- print("Warning: no GPU has been detected.\nFalling back to CPU mode.\n")
- shared.args.cpu = True
- if shared.args.cpu:
- params.append("low_cpu_mem_usage=True")
- params.append("torch_dtype=torch.float32")
- else:
- params.append("device_map='auto'")
- params.append("load_in_8bit=True" if shared.args.load_in_8bit else "torch_dtype=torch.bfloat16" if shared.args.bf16 else "torch_dtype=torch.float16")
- if shared.args.gpu_memory:
- memory_map = shared.args.gpu_memory
- max_memory = f"max_memory={{0: '{memory_map[0]}GiB'"
- for i in range(1, len(memory_map)):
- max_memory += (f", {i}: '{memory_map[i]}GiB'")
- max_memory += (f", 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
- params.append(max_memory)
- elif not shared.args.load_in_8bit:
- total_mem = (torch.cuda.get_device_properties(0).total_memory/(1024*1024))
- suggestion = round((total_mem-1000)/1000)*1000
- if total_mem-suggestion < 800:
- suggestion -= 1000
- suggestion = int(round(suggestion/1000))
- print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
- params.append(f"max_memory={{0: '{suggestion}GiB', 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
- if shared.args.disk:
- params.append(f"offload_folder='{shared.args.disk_cache_dir}'")
- command = f"{command}(Path(f'models/{shared.model_name}'), {', '.join(set(params))})"
- model = eval(command)
- # Loading the tokenizer
- if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path("models/gpt-j-6B/").exists():
- tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
- else:
- tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{shared.model_name}/"))
- tokenizer.truncation_side = 'left'
- print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
- return model, tokenizer
- def load_soft_prompt(name):
- if name == 'None':
- shared.soft_prompt = False
- shared.soft_prompt_tensor = None
- else:
- with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
- zf.extract('tensor.npy')
- zf.extract('meta.json')
- j = json.loads(open('meta.json', 'r').read())
- print(f"\nLoading the softprompt \"{name}\".")
- for field in j:
- if field != 'name':
- if type(j[field]) is list:
- print(f"{field}: {', '.join(j[field])}")
- else:
- print(f"{field}: {j[field]}")
- print()
- tensor = np.load('tensor.npy')
- Path('tensor.npy').unlink()
- Path('meta.json').unlink()
- tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
- tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
- shared.soft_prompt = True
- shared.soft_prompt_tensor = tensor
- return name
|