| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- import re
- from num2words import num2words
- alphabet_map = {
- "A": " Ei ",
- "B": " Bee ",
- "C": " See ",
- "D": " Dee ",
- "E": " Ii ",
- "F": " Eff ",
- "G": " Jee ",
- "H": " Eich ",
- "I": " Eye ",
- "J": " Jay ",
- "K": " Kay ",
- "L": " El ",
- "M": " Emm ",
- "N": " Enn ",
- "O": " Ohh ",
- "P": " Pii ",
- "Q": " Queue ",
- "R": " Are ",
- "S": " Ess ",
- "T": " Tee ",
- "U": " You ",
- "V": " Vii ",
- "W": " Double You ",
- "X": " Ex ",
- "Y": " Why ",
- "Z": "Zed" # Zed is weird, as I (da3dsoul) am American, but most of the voice models sound British, so it matches
- }
- def preprocess(string):
- string = remove_surrounded_chars(string)
- string = string.replace('"', '')
- string = string.replace('“', '')
- string = string.replace('\n', ' ')
- string = remove_commas(string)
- string = replace_roman(string)
- string = hyphen_range_to(string)
- string = num_to_words(string)
- # TODO Try to use a ML predictor to expand abbreviations. It's hard, dependent on context, and whether to actually
- # try to say the abbreviation or spell it out as I've done below is not agreed upon
- # For now, expand abbreviations to pronunciations
- string = replace_abbreviations(string)
- string = string.strip()
- return string
- def remove_surrounded_chars(string):
- # this expression matches to 'as few symbols as possible (0 upwards) between any asterisks' OR
- # 'as few symbols as possible (0 upwards) between an asterisk and the end of the string'
- return re.sub(r'\*[^*]*?(\*|$)', '', string)
- def replace_roman(string):
- pattern = re.compile(r'\s[IVXLCDM]+[\s,.?!)"\'\]>]')
- result = string
- while True:
- match = pattern.search(result)
- if match is None:
- break
- start = match.start()
- end = match.end()
- result = result[0:start+1] + str(roman_to_int(result[start+1:end-1])) + result[end-1:len(result)]
- return result
- def roman_to_int(s):
- rom_val = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
- int_val = 0
- for i in range(len(s)):
- if i > 0 and rom_val[s[i]] > rom_val[s[i - 1]]:
- int_val += rom_val[s[i]] - 2 * rom_val[s[i - 1]]
- else:
- int_val += rom_val[s[i]]
- return int_val
- def hyphen_range_to(text):
- pattern = re.compile(r'(\d+)[-–](\d+)')
- result = pattern.sub(lambda x: x.group(1) + ' to ' + x.group(2), text)
- return result
- def num_to_words(text):
- pattern = re.compile(r'\d+')
- result = pattern.sub(lambda x: num2words(int(x.group())), text)
- return result
- def replace_abbreviations(string):
- pattern = re.compile(r'[\s("\'\[<][A-Z]{2,4}[\s,.?!)"\'\]>]')
- result = string
- while True:
- match = pattern.search(result)
- if match is None:
- break
- start = match.start()
- end = match.end()
- result = result[0:start] + replace_abbreviation(result[start:end]) + result[end:len(result)]
- return result
- def replace_abbreviation(string):
- result = ""
- for char in string:
- result = match_mapping(char, result)
- return result
- def match_mapping(char, result):
- for mapping in alphabet_map.keys():
- if char == mapping:
- return result + alphabet_map[char]
- return result + char
- def remove_commas(text):
- import re
- pattern = re.compile(r'(\d),(\d)')
- result = pattern.sub(r'\1\2', text)
- return result
- def __main__(args):
- print(preprocess(args[1]))
- if __name__ == "__main__":
- import sys
- __main__(sys.argv)
|