| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- import os
- from pathlib import Path
- import modules.shared as shared
- from modules.callbacks import Iteratorize
- import llamacpp
- class LlamaCppTokenizer:
- """A thin wrapper over the llamacpp tokenizer"""
- def __init__(self, model: llamacpp.PyLLAMA):
- self._tokenizer = model.get_tokenizer()
- self.eos_token_id = 2
- self.bos_token_id = 0
- @classmethod
- def from_model(cls, model: llamacpp.PyLLAMA):
- return cls(model)
- def encode(self, prompt):
- return self._tokenizer.tokenize(prompt)
- def decode(self, ids):
- return self._tokenizer.detokenize(ids)
- class LlamaCppModel:
- def __init__(self):
- self.initialized = False
- @classmethod
- def from_pretrained(self, path):
- params = llamacpp.gpt_params(
- str(path), # model
- 2048, # ctx_size
- 200, # n_predict
- 40, # top_k
- 0.95, # top_p
- 0.80, # temp
- 1.30, # repeat_penalty
- -1, # seed
- 8, # threads
- 64, # repeat_last_n
- 8, # batch_size
- )
- _model = llamacpp.PyLLAMA(params)
- result = self()
- result.model = _model
- tokenizer = LlamaCppTokenizer.from_model(_model)
- return result, tokenizer
- # TODO: Allow passing in params for each inference
- def generate(self, context="", num_tokens=10, callback=None):
- # params = self.params
- # params.n_predict = token_count
- # params.top_p = top_p
- # params.top_k = top_k
- # params.temp = temperature
- # params.repeat_penalty = repetition_penalty
- # params.repeat_last_n = repeat_last_n
- # model.params = params
- if not self.initialized:
- self.model.add_bos()
- self.model.update_input(context)
- if not self.initialized:
- self.model.prepare_context()
- self.initialized = True
- output = ""
- is_end_of_text = False
- ctr = 0
- while not self.model.is_finished() and ctr < num_tokens and not is_end_of_text:
- if self.model.has_unconsumed_input():
- self.model.ingest_all_pending_input(False)
- else:
- text, is_end_of_text = self.model.infer_text()
- if callback:
- callback(text)
- output += text
- ctr += 1
- return output
- def generate_with_streaming(self, **kwargs):
- with Iteratorize(self.generate, kwargs, callback=None) as generator:
- reply = kwargs['context']
- for token in generator:
- reply += token
- yield reply
|