models.py 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194
  1. import json
  2. import os
  3. import sys
  4. import time
  5. import zipfile
  6. from pathlib import Path
  7. import numpy as np
  8. import torch
  9. import transformers
  10. from transformers import AutoModelForCausalLM, AutoTokenizer
  11. import modules.shared as shared
  12. transformers.logging.set_verbosity_error()
  13. local_rank = None
  14. if shared.args.flexgen:
  15. from flexgen.flex_opt import (CompressionConfig, ExecutionEnv, OptLM,
  16. Policy, str2bool)
  17. if shared.args.deepspeed:
  18. import deepspeed
  19. from transformers.deepspeed import (HfDeepSpeedConfig,
  20. is_deepspeed_zero3_enabled)
  21. from modules.deepspeed_parameters import generate_ds_config
  22. # Distributed setup
  23. local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
  24. world_size = int(os.getenv("WORLD_SIZE", "1"))
  25. torch.cuda.set_device(local_rank)
  26. deepspeed.init_distributed()
  27. ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
  28. dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
  29. def load_model(model_name):
  30. print(f"Loading {model_name}...")
  31. t0 = time.time()
  32. shared.is_RWKV = model_name.lower().startswith('rwkv-')
  33. # Default settings
  34. if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.load_in_4bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen or shared.is_RWKV):
  35. if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
  36. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
  37. else:
  38. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16).cuda()
  39. # FlexGen
  40. elif shared.args.flexgen:
  41. # Initialize environment
  42. env = ExecutionEnv.create(shared.args.disk_cache_dir)
  43. # Offloading policy
  44. policy = Policy(1, 1,
  45. shared.args.percent[0], shared.args.percent[1],
  46. shared.args.percent[2], shared.args.percent[3],
  47. shared.args.percent[4], shared.args.percent[5],
  48. overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight,
  49. cpu_cache_compute=False, attn_sparsity=1.0,
  50. compress_weight=shared.args.compress_weight,
  51. comp_weight_config=CompressionConfig(
  52. num_bits=4, group_size=64,
  53. group_dim=0, symmetric=False),
  54. compress_cache=False,
  55. comp_cache_config=CompressionConfig(
  56. num_bits=4, group_size=64,
  57. group_dim=2, symmetric=False))
  58. model = OptLM(f"facebook/{shared.model_name}", env, "models", policy)
  59. # DeepSpeed ZeRO-3
  60. elif shared.args.deepspeed:
  61. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
  62. model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
  63. model.module.eval() # Inference
  64. print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
  65. # RMKV model (not on HuggingFace)
  66. elif shared.is_RWKV:
  67. from modules.RWKV import RWKVModel, RWKVTokenizer
  68. model = RWKVModel.from_pretrained(Path(f'models/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
  69. tokenizer = RWKVTokenizer.from_pretrained(Path('models'))
  70. return model, tokenizer
  71. # 4-bit LLaMA
  72. elif shared.args.load_in_4bit:
  73. sys.path.insert(0, os.path.abspath(Path("repositories/GPTQ-for-LLaMa")))
  74. from llama import load_quant
  75. path_to_model = Path(f'models/{model_name}')
  76. pt_model = ''
  77. if path_to_model.name.lower().startswith('llama-7b'):
  78. pt_model = 'llama-7b-4bit.pt'
  79. elif path_to_model.name.lower().startswith('llama-13b'):
  80. pt_model = 'llama-13b-4bit.pt'
  81. elif path_to_model.name.lower().startswith('llama-30b'):
  82. pt_model = 'llama-30b-4bit.pt'
  83. elif path_to_model.name.lower().startswith('llama-65b'):
  84. pt_model = 'llama-65b-4bit.pt'
  85. else:
  86. pt_model = f'{model_name}-4bit.pt'
  87. # Try to find the .pt both in models/ and in the subfolder
  88. pt_path = None
  89. for path in [Path(p) for p in [f"models/{pt_model}", f"{path_to_model}/{pt_model}"]]:
  90. if path.exists():
  91. pt_path = path
  92. if not pt_path:
  93. print(f"Could not find {pt_model}, exiting...")
  94. exit()
  95. model = load_quant(path_to_model, pt_path, 4)
  96. model = model.to(torch.device('cuda:0'))
  97. # Custom
  98. else:
  99. command = "AutoModelForCausalLM.from_pretrained"
  100. params = ["low_cpu_mem_usage=True"]
  101. if not shared.args.cpu and not torch.cuda.is_available():
  102. print("Warning: no GPU has been detected.\nFalling back to CPU mode.\n")
  103. shared.args.cpu = True
  104. if shared.args.cpu:
  105. params.append("low_cpu_mem_usage=True")
  106. params.append("torch_dtype=torch.float32")
  107. else:
  108. params.append("device_map='auto'")
  109. params.append("load_in_8bit=True" if shared.args.load_in_8bit else "torch_dtype=torch.bfloat16" if shared.args.bf16 else "torch_dtype=torch.float16")
  110. if shared.args.gpu_memory:
  111. memory_map = shared.args.gpu_memory
  112. max_memory = f"max_memory={{0: '{memory_map[0]}GiB'"
  113. for i in range(1, len(memory_map)):
  114. max_memory += (f", {i}: '{memory_map[i]}GiB'")
  115. max_memory += (f", 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
  116. params.append(max_memory)
  117. elif not shared.args.load_in_8bit:
  118. total_mem = (torch.cuda.get_device_properties(0).total_memory/(1024*1024))
  119. suggestion = round((total_mem-1000)/1000)*1000
  120. if total_mem-suggestion < 800:
  121. suggestion -= 1000
  122. suggestion = int(round(suggestion/1000))
  123. print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
  124. params.append(f"max_memory={{0: '{suggestion}GiB', 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
  125. if shared.args.disk:
  126. params.append(f"offload_folder='{shared.args.disk_cache_dir}'")
  127. command = f"{command}(Path(f'models/{shared.model_name}'), {', '.join(set(params))})"
  128. model = eval(command)
  129. # Loading the tokenizer
  130. if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path("models/gpt-j-6B/").exists():
  131. tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
  132. else:
  133. tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{shared.model_name}/"))
  134. tokenizer.truncation_side = 'left'
  135. print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
  136. return model, tokenizer
  137. def load_soft_prompt(name):
  138. if name == 'None':
  139. shared.soft_prompt = False
  140. shared.soft_prompt_tensor = None
  141. else:
  142. with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
  143. zf.extract('tensor.npy')
  144. zf.extract('meta.json')
  145. j = json.loads(open('meta.json', 'r').read())
  146. print(f"\nLoading the softprompt \"{name}\".")
  147. for field in j:
  148. if field != 'name':
  149. if type(j[field]) is list:
  150. print(f"{field}: {', '.join(j[field])}")
  151. else:
  152. print(f"{field}: {j[field]}")
  153. print()
  154. tensor = np.load('tensor.npy')
  155. Path('tensor.npy').unlink()
  156. Path('meta.json').unlink()
  157. tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
  158. tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
  159. shared.soft_prompt = True
  160. shared.soft_prompt_tensor = tensor
  161. return name