| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- '''
- Downloads models from Hugging Face to models/model-name.
- Example:
- python download-model.py facebook/opt-1.3b
- '''
- import argparse
- import multiprocessing
- import re
- import sys
- from pathlib import Path
- import requests
- import tqdm
- from bs4 import BeautifulSoup
- parser = argparse.ArgumentParser()
- parser.add_argument('MODEL', type=str)
- parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.')
- parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.')
- args = parser.parse_args()
- def get_file(args):
- url = args[0]
- output_folder = args[1]
- idx = args[2]
- tot = args[3]
- print(f"Downloading file {idx} of {tot}...")
- r = requests.get(url, stream=True)
- with open(output_folder / Path(url.split('/')[-1]), 'wb') as f:
- total_size = int(r.headers.get('content-length', 0))
- block_size = 1024
- t = tqdm.tqdm(total=total_size, unit='iB', unit_scale=True)
- for data in r.iter_content(block_size):
- t.update(len(data))
- f.write(data)
- t.close()
- def sanitize_branch_name(branch_name):
- pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
- if pattern.match(branch_name):
- return branch_name
- else:
- raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
- if __name__ == '__main__':
- model = args.MODEL
- if model[-1] == '/':
- model = model[:-1]
- branch = args.branch
- if args.branch is None:
- branch = 'main'
- else:
- try:
- branch_name = args.branch
- branch = sanitize_branch_name(branch_name)
- except ValueError as err_branch:
- print(f"Error: {err_branch}")
- sys.exit()
- url = f'https://huggingface.co/{model}/tree/{branch}'
- if branch != 'main':
- output_folder = Path("models") / (model.split('/')[-1] + f'_{branch}')
- else:
- output_folder = Path("models") / model.split('/')[-1]
- if not output_folder.exists():
- output_folder.mkdir()
- # Finding the relevant files to download
- page = requests.get(url)
- soup = BeautifulSoup(page.content, 'html.parser')
- links = soup.find_all('a')
- downloads = []
- classifications = []
- has_pytorch = False
- has_safetensors = False
- for link in links:
- href = link.get('href')[1:]
- if href.startswith(f'{model}/resolve/{branch}'):
- fname = Path(href).name
- is_pytorch = re.match("pytorch_model.*\.bin", fname)
- is_safetensors = re.match("model.*\.safetensors", fname)
- is_text = re.match(".*\.(txt|json)", fname)
- if is_text or is_safetensors or is_pytorch:
- downloads.append(f'https://huggingface.co/{href}')
- if is_text:
- classifications.append('text')
- elif is_safetensors:
- has_safetensors = True
- classifications.append('safetensors')
- elif is_pytorch:
- has_pytorch = True
- classifications.append('pytorch')
- # If both pytorch and safetensors are available, download safetensors only
- if has_pytorch and has_safetensors:
- for i in range(len(classifications)-1, -1, -1):
- if classifications[i] == 'pytorch':
- downloads.pop(i)
- # Downloading the files
- print(f"Downloading the model to {output_folder}")
- pool = multiprocessing.Pool(processes=args.threads)
- results = pool.map(get_file, [[downloads[i], output_folder, i+1, len(downloads)] for i in range(len(downloads))])
- pool.close()
- pool.join()
|