| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- import sys, torch, json
- from pathlib import Path
- import gradio as gr
- from datasets import load_dataset
- import transformers
- from modules import ui, shared
- from peft import prepare_model_for_int8_training, LoraConfig, get_peft_model, get_peft_model_state_dict
- def get_json_dataset(path: str):
- def get_set():
- return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path(path).glob('*.json'))), key=str.lower)
- return get_set
- def create_train_interface():
- with gr.Tab('Train LoRA', elem_id='lora-train-tab'):
- loraName = gr.Textbox(label="Name", info="The name of your new LoRA file")
- # TODO: Add explanations of batch sizes and recommendations. Note that batch/microBatch determines gradient accumulation and explain what that means. Note the effects on VRAM usage from changing these values.
- microBatchSize = gr.Slider(label='Micro Batch Size', value=4, minimum=1, maximum=128, step=1, info='(TODO)')
- batchSize = gr.Slider(label='Batch Size', value=128, minimum=1, maximum=1024, step=4, info='(TODO)')
- epochs = gr.Slider(label='Epochs', value=1, minimum=1, maximum=1000, info='Number of times every entry in the dataset should be fed into training. So 1 means feed each item in once, 5 means feed it in five times, etc.')
- learningRate = gr.Textbox(label='Learning Rate', value='3e-4', info='Learning rate, in scientific notation. 3e-4 is a good starting base point. 1e-2 is extremely high, 1e-6 is extremely low.')
- # TODO: What is the actual maximum rank? Likely distinct per model. This might be better to somehow be on a log scale.
- loraRank = gr.Slider(label='LoRA Rank', value=8, minimum=1, maximum=1024, step=4, info='LoRA Rank, or dimension count. Higher values produce a larger file with better control over the model\'s content. Smaller values produce a smaller file with less overall control. Small values like 4 or 8 are great for stylistic guidance, high values like 128 or 256 are good for teaching content upgrades. Higher ranks also require higher VRAM.')
- loraAlpha = gr.Slider(label='LoRA Alpha', value=16, minimum=1, maximum=2048, step=4, info='LoRA Alpha. This divided by the rank becomes the scaling of the LoRA. Higher means stronger. A good standard value is twice your Rank.')
- # TODO: Better explain what this does.
- loraDropout = gr.Slider(label='LoRA Dropout', minimum=0.0, maximum=1.0, step=0.025, value=0.05, info='Percentage probability for dropout of LoRA layers.')
- cutoffLen = gr.Slider(label='Cutoff Length', minimum=1,maximum=2048, value=256, step=32, info='Cutoff length for text input. Essentially, how long of a line of text to feed in at a time. Higher values require drastically more VRAM.')
- with gr.Row():
- datasetFunction = get_json_dataset('training/datasets')
- dataset = gr.Dropdown(choices=datasetFunction(), value='None', label='Dataset')
- ui.create_refresh_button(dataset, lambda : None, lambda : {'choices': datasetFunction()}, 'refresh-button')
- with gr.Row():
- evalDataset = gr.Dropdown(choices=datasetFunction(), value='None', label='Evaluation Dataset')
- ui.create_refresh_button(evalDataset, lambda : None, lambda : {'choices': datasetFunction()}, 'refresh-button')
- with gr.Row():
- formatsFunction = get_json_dataset('training/formats')
- format = gr.Dropdown(choices=formatsFunction(), value='None', label='Data Format')
- ui.create_refresh_button(format, lambda : None, lambda : {'choices': formatsFunction()}, 'refresh-button')
- startButton = gr.Button("Start LoRA Training")
- output = gr.Markdown(value="(...)")
- startButton.click(do_train, [loraName, microBatchSize, batchSize, epochs, learningRate, loraRank, loraAlpha, loraDropout, cutoffLen, dataset, evalDataset, format], [output])
- def cleanPath(basePath: str, path: str):
- """"Strips unusual symbols and forcibly builds a path as relative to the intended directory."""
- # TODO: Probably could do with a security audit to guarantee there's no ways this can be bypassed to target an unwanted path.
- # Or swap it to a strict whitelist of [a-zA-Z_0-9]
- path = path.replace('\\', '/').replace('..', '_')
- if basePath is None:
- return path
- return f'{Path(basePath).absolute()}/{path}'
- def do_train(loraName: str, microBatchSize: int, batchSize: int, epochs: int, learningRate: float, loraRank: int, loraAlpha: int, loraDropout: float, cutoffLen: int, dataset: str, evalDataset: str, format: str):
- # Input validation / processing
- # TODO: --lora-dir PR once pulled will need to be applied here
- loraName = f"loras/{cleanPath(None, loraName)}"
- if dataset is None:
- return "**Missing dataset choice input, cannot continue.**"
- if format is None:
- return "**Missing format choice input, cannot continue.**"
- gradientAccumulationSteps = batchSize // microBatchSize
- actualLR = float(learningRate)
- model = shared.model
- tokenizer = shared.tokenizer
- tokenizer.pad_token = 0
- tokenizer.padding_side = "left"
- # Prep the dataset, format, etc
- with open(cleanPath('training/formats', f'{format}.json'), 'r') as formatFile:
- formatData: dict[str, str] = json.load(formatFile)
- def tokenize(prompt):
- result = tokenizer(prompt, truncation=True, max_length=cutoffLen + 1, padding="max_length")
- return {
- "input_ids": result["input_ids"][:-1],
- "attention_mask": result["attention_mask"][:-1],
- }
- def generate_prompt(data_point: dict[str, str]):
- for options, data in formatData.items():
- if set(options.split(',')) == set(x[0] for x in data_point.items() if len(x[1].strip()) > 0):
- for key, val in data_point.items():
- data = data.replace(f'%{key}%', val)
- return data
- raise RuntimeError(f'Data-point "{data_point}" has no keyset match within format "{list(formatData.keys())}"')
- def generate_and_tokenize_prompt(data_point):
- prompt = generate_prompt(data_point)
- return tokenize(prompt)
- data = load_dataset("json", data_files=cleanPath('training/datasets', f'{dataset}.json'))
- train_data = data['train'].shuffle().map(generate_and_tokenize_prompt)
- if evalDataset == 'None':
- evalData = None
- else:
- evalData = load_dataset("json", data_files=cleanPath('training/datasets', f'{evalDataset}.json'))
- evalData = evalData['train'].shuffle().map(generate_and_tokenize_prompt)
- # Start prepping the model itself
- if not hasattr(model, 'lm_head') or hasattr(model.lm_head, 'weight'):
- model = prepare_model_for_int8_training(model)
- config = LoraConfig(
- r=loraRank,
- lora_alpha=loraAlpha,
- # TODO: Should target_modules be configurable?
- target_modules=[ "q_proj", "v_proj" ],
- lora_dropout=loraDropout,
- bias="none",
- task_type="CAUSAL_LM"
- )
- model = get_peft_model(model, config)
- trainer = transformers.Trainer(
- model=model,
- train_dataset=train_data,
- eval_dataset=evalData,
- args=transformers.TrainingArguments(
- per_device_train_batch_size=microBatchSize,
- gradient_accumulation_steps=gradientAccumulationSteps,
- # TODO: Should more of these be configurable? Probably.
- warmup_steps=100,
- num_train_epochs=epochs,
- learning_rate=actualLR,
- fp16=True,
- logging_steps=20,
- evaluation_strategy="steps" if evalData is not None else "no",
- save_strategy="steps",
- eval_steps=200 if evalData is not None else None,
- save_steps=200,
- output_dir=loraName,
- save_total_limit=3,
- load_best_model_at_end=True if evalData is not None else False,
- # TODO: Enable multi-device support
- ddp_find_unused_parameters=None,
- ),
- data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
- )
- model.config.use_cache = False
- old_state_dict = model.state_dict
- model.state_dict = (
- lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
- ).__get__(model, type(model))
- if torch.__version__ >= "2" and sys.platform != "win32":
- model = torch.compile(model)
- # Actually start and run and save at the end
- trainer.train()
- model.save_pretrained(loraName)
- return "Done!"
|