| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- import argparse
- model = None
- tokenizer = None
- model_name = "None"
- lora_name = "None"
- soft_prompt_tensor = None
- soft_prompt = False
- is_RWKV = False
- # Chat variables
- history = {'internal': [], 'visible': []}
- character = 'None'
- stop_everything = False
- processing_message = '*Is typing...*'
- # UI elements (buttons, sliders, HTML, etc)
- gradio = {}
- # Generation input parameters
- input_params = []
- # For restarting the interface
- need_restart = False
- settings = {
- 'max_new_tokens': 200,
- 'max_new_tokens_min': 1,
- 'max_new_tokens_max': 2000,
- 'name1': 'You',
- 'name2': 'Assistant',
- 'context': 'This is a conversation with your Assistant. The Assistant is very helpful and is eager to chat with you and answer your questions.',
- 'stop_at_newline': False,
- 'chat_prompt_size': 2048,
- 'chat_prompt_size_min': 0,
- 'chat_prompt_size_max': 2048,
- 'chat_generation_attempts': 1,
- 'chat_generation_attempts_min': 1,
- 'chat_generation_attempts_max': 5,
- 'default_extensions': [],
- 'chat_default_extensions': ["gallery"],
- 'presets': {
- 'default': 'NovelAI-Sphinx Moth',
- '.*pygmalion': 'Pygmalion',
- '.*RWKV': 'Naive',
- },
- 'prompts': {
- 'default': 'QA',
- '.*(gpt4chan|gpt-4chan|4chan)': 'GPT-4chan',
- '.*oasst': 'Open Assistant',
- '.*alpaca': "Alpaca",
- },
- 'lora_prompts': {
- 'default': 'QA',
- '.*(alpaca-lora-7b|alpaca-lora-13b|alpaca-lora-30b)': "Alpaca",
- }
- }
- def str2bool(v):
- if isinstance(v, bool):
- return v
- if v.lower() in ('yes', 'true', 't', 'y', '1'):
- return True
- elif v.lower() in ('no', 'false', 'f', 'n', '0'):
- return False
- else:
- raise argparse.ArgumentTypeError('Boolean value expected.')
- parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog,max_help_position=54))
- parser.add_argument('--model', type=str, help='Name of the model to load by default.')
- parser.add_argument('--lora', type=str, help='Name of the LoRA to apply to the model by default.')
- parser.add_argument('--notebook', action='store_true', help='Launch the web UI in notebook mode, where the output is written to the same text box as the input.')
- parser.add_argument('--chat', action='store_true', help='Launch the web UI in chat mode.')
- parser.add_argument('--cai-chat', action='store_true', help='Launch the web UI in chat mode with a style similar to Character.AI\'s. If the file img_bot.png or img_bot.jpg exists in the same folder as server.py, this image will be used as the bot\'s profile picture. Similarly, img_me.png or img_me.jpg will be used as your profile picture.')
- parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
- parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.')
- parser.add_argument('--gptq-bits', type=int, default=0, help='DEPRECATED: use --wbits instead.')
- parser.add_argument('--gptq-model-type', type=str, help='DEPRECATED: use --model_type instead.')
- parser.add_argument('--gptq-pre-layer', type=int, default=0, help='DEPRECATED: use --pre_layer instead.')
- parser.add_argument('--wbits', type=int, default=0, help='GPTQ: Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.')
- parser.add_argument('--model_type', type=str, help='GPTQ: Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported.')
- parser.add_argument('--groupsize', type=int, default=-1, help='GPTQ: Group size.')
- parser.add_argument('--pre_layer', type=int, default=0, help='GPTQ: The number of layers to preload.')
- parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
- parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
- parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')
- parser.add_argument('--disk-cache-dir', type=str, default="cache", help='Directory to save the disk cache to. Defaults to "cache".')
- parser.add_argument('--gpu-memory', type=str, nargs="+", help='Maxmimum GPU memory in GiB to be allocated per GPU. Example: --gpu-memory 10 for a single GPU, --gpu-memory 10 5 for two GPUs.')
- parser.add_argument('--cpu-memory', type=str, help='Maximum CPU memory in GiB to allocate for offloaded weights. Must be an integer number. Defaults to 99.')
- parser.add_argument('--no-cache', action='store_true', help='Set use_cache to False while generating text. This reduces the VRAM usage a bit at a performance cost.')
- parser.add_argument('--flexgen', action='store_true', help='Enable the use of FlexGen offloading.')
- parser.add_argument('--percent', type=int, nargs="+", default=[0, 100, 100, 0, 100, 0], help='FlexGen: allocation percentages. Must be 6 numbers separated by spaces (default: 0, 100, 100, 0, 100, 0).')
- parser.add_argument("--compress-weight", action="store_true", help="FlexGen: activate weight compression.")
- parser.add_argument("--pin-weight", type=str2bool, nargs="?", const=True, default=True, help="FlexGen: whether to pin weights (setting this to False reduces CPU memory by 20%%).")
- parser.add_argument('--deepspeed', action='store_true', help='Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration.')
- parser.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.')
- parser.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.')
- parser.add_argument('--rwkv-strategy', type=str, default=None, help='RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8".')
- parser.add_argument('--rwkv-cuda-on', action='store_true', help='RWKV: Compile the CUDA kernel for better performance.')
- parser.add_argument('--no-stream', action='store_true', help='Don\'t stream the text output in real time.')
- parser.add_argument('--settings', type=str, help='Load the default interface settings from this json file. See settings-template.json for an example. If you create a file called settings.json, this file will be loaded by default without the need to use the --settings flag.')
- parser.add_argument('--extensions', type=str, nargs="+", help='The list of extensions to load. If you want to load more than one extension, write the names separated by spaces.')
- parser.add_argument("--model-dir", type=str, default='models/', help="Path to directory with all the models")
- parser.add_argument("--lora-dir", type=str, default='loras/', help="Path to directory with all the loras")
- parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
- parser.add_argument('--listen', action='store_true', help='Make the web UI reachable from your local network.')
- parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
- parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
- parser.add_argument('--auto-launch', action='store_true', default=False, help='Open the web UI in the default browser upon launch.')
- parser.add_argument("--gradio-auth-path", type=str, help='Set the gradio authentication file path. The file should contain one or more user:password pairs in this format: "u1:p1,u2:p2,u3:p3"', default=None)
- args = parser.parse_args()
- # Provisional, this will be deleted later
- deprecated_dict = {'gptq_bits': ['wbits', 0], 'gptq_model_type': ['model_type', None], 'gptq_pre_layer': ['prelayer', 0]}
- for k in deprecated_dict:
- if eval(f"args.{k}") != deprecated_dict[k][1]:
- print(f"Warning: --{k} is deprecated and will be removed. Use --{deprecated_dict[k][0]} instead.")
- exec(f"args.{deprecated_dict[k][0]} = args.{k}")
|