| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275 |
- import json
- import sys
- import threading
- import time
- import traceback
- from pathlib import Path
- import gradio as gr
- import torch
- import transformers
- from datasets import Dataset, load_dataset
- from peft import (LoraConfig, get_peft_model, get_peft_model_state_dict,
- prepare_model_for_int8_training)
- from modules import shared, ui
- WANT_INTERRUPT = False
- CURRENT_STEPS = 0
- MAX_STEPS = 0
- CURRENT_GRADIENT_ACCUM = 1
- def get_dataset(path: str, ext: str):
- return ['None'] + sorted(set((k.stem for k in Path(path).glob(f'*.{ext}'))), key=str.lower)
- def create_train_interface():
- with gr.Tab('Train LoRA', elem_id='lora-train-tab'):
- lora_name = gr.Textbox(label="Name", info="The name of your new LoRA file")
- with gr.Row():
- # TODO: Implement multi-device support.
- micro_batch_size = gr.Slider(label='Micro Batch Size', value=4, minimum=1, maximum=128, step=1, info='Per-device batch size (NOTE: multiple devices not yet implemented). Increasing this will increase VRAM usage.')
- batch_size = gr.Slider(label='Batch Size', value=128, minimum=0, maximum=1024, step=4, info='Global batch size. The two batch sizes together determine gradient accumulation (gradientAccum = batch / microBatch). Higher gradient accum values lead to better quality training.')
- with gr.Row():
- epochs = gr.Number(label='Epochs', value=3, info='Number of times every entry in the dataset should be fed into training. So 1 means feed each item in once, 5 means feed it in five times, etc.')
- learning_rate = gr.Textbox(label='Learning Rate', value='3e-4', info='Learning rate, in scientific notation. 3e-4 is a good starting base point. 1e-2 is extremely high, 1e-6 is extremely low.')
- # TODO: What is the actual maximum rank? Likely distinct per model. This might be better to somehow be on a log scale.
- lora_rank = gr.Slider(label='LoRA Rank', value=32, minimum=0, maximum=1024, step=4, info='LoRA Rank, or dimension count. Higher values produce a larger file with better control over the model\'s content. Smaller values produce a smaller file with less overall control. Small values like 4 or 8 are great for stylistic guidance, high values like 128 or 256 are good for teaching content upgrades. Higher ranks also require higher VRAM.')
- lora_alpha = gr.Slider(label='LoRA Alpha', value=64, minimum=0, maximum=2048, step=4, info='LoRA Alpha. This divided by the rank becomes the scaling of the LoRA. Higher means stronger. A good standard value is twice your Rank.')
- # TODO: Better explain what this does, in terms of real world effect especially.
- lora_dropout = gr.Slider(label='LoRA Dropout', minimum=0.0, maximum=1.0, step=0.025, value=0.05, info='Percentage probability for dropout of LoRA layers.')
- cutoff_len = gr.Slider(label='Cutoff Length', minimum=0, maximum=2048, value=256, step=32, info='Cutoff length for text input. Essentially, how long of a line of text to feed in at a time. Higher values require drastically more VRAM.')
- with gr.Tab(label="Formatted Dataset"):
- with gr.Row():
- dataset = gr.Dropdown(choices=get_dataset('training/datasets', 'json'), value='None', label='Dataset', info='The dataset file to use for training.')
- ui.create_refresh_button(dataset, lambda : None, lambda : {'choices': get_dataset('training/datasets', 'json')}, 'refresh-button')
- eval_dataset = gr.Dropdown(choices=get_dataset('training/datasets', 'json'), value='None', label='Evaluation Dataset', info='The dataset file used to evaluate the model after training.')
- ui.create_refresh_button(eval_dataset, lambda : None, lambda : {'choices': get_dataset('training/datasets', 'json')}, 'refresh-button')
- format = gr.Dropdown(choices=get_dataset('training/formats', 'json'), value='None', label='Data Format', info='The format file used to decide how to format the dataset input.')
- ui.create_refresh_button(format, lambda : None, lambda : {'choices': get_dataset('training/formats', 'json')}, 'refresh-button')
- with gr.Tab(label="Raw Text File"):
- with gr.Row():
- raw_text_file = gr.Dropdown(choices=get_dataset('training/datasets', 'txt'), value='None', label='Text File', info='The raw text file to use for training.')
- ui.create_refresh_button(raw_text_file, lambda : None, lambda : {'choices': get_dataset('training/datasets', 'txt')}, 'refresh-button')
- overlap_len = gr.Slider(label='Overlap Length', minimum=0,maximum=512, value=128, step=16, info='Overlap length - ie how many tokens from the prior chunk of text to include into the next chunk. (The chunks themselves will be of a size determined by Cutoff Length above). Setting overlap to exactly half the cutoff length may be ideal.')
- with gr.Row():
- start_button = gr.Button("Start LoRA Training")
- stop_button = gr.Button("Interrupt")
- output = gr.Markdown(value="Ready")
- start_button.click(do_train, [lora_name, micro_batch_size, batch_size, epochs, learning_rate, lora_rank, lora_alpha, lora_dropout, cutoff_len, dataset, eval_dataset, format, raw_text_file, overlap_len], [output])
- stop_button.click(do_interrupt, [], [], cancels=[], queue=False)
- def do_interrupt():
- global WANT_INTERRUPT
- WANT_INTERRUPT = True
- class Callbacks(transformers.TrainerCallback):
- def on_step_begin(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs):
- global CURRENT_STEPS, MAX_STEPS
- CURRENT_STEPS = state.global_step * CURRENT_GRADIENT_ACCUM
- MAX_STEPS = state.max_steps * CURRENT_GRADIENT_ACCUM
- if WANT_INTERRUPT:
- control.should_epoch_stop = True
- control.should_training_stop = True
- def on_substep_end(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs):
- global CURRENT_STEPS
- CURRENT_STEPS += 1
- if WANT_INTERRUPT:
- control.should_epoch_stop = True
- control.should_training_stop = True
- def clean_path(base_path: str, path: str):
- """"Strips unusual symbols and forcibly builds a path as relative to the intended directory."""
- # TODO: Probably could do with a security audit to guarantee there's no ways this can be bypassed to target an unwanted path.
- # Or swap it to a strict whitelist of [a-zA-Z_0-9]
- path = path.replace('\\', '/').replace('..', '_')
- if base_path is None:
- return path
- return f'{Path(base_path).absolute()}/{path}'
- def do_train(lora_name: str, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lora_rank: int,
- lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, raw_text_file: str, overlap_len: int):
- global WANT_INTERRUPT, CURRENT_STEPS, MAX_STEPS, CURRENT_GRADIENT_ACCUM
- WANT_INTERRUPT = False
- CURRENT_STEPS = 0
- MAX_STEPS = 0
- # == Input validation / processing ==
- yield "Prepping..."
- lora_name = f"{shared.args.lora_dir}/{clean_path(None, lora_name)}"
- actual_lr = float(learning_rate)
- if cutoff_len <= 0 or micro_batch_size <= 0 or batch_size <= 0 or actual_lr <= 0 or lora_rank <= 0 or lora_alpha <= 0:
- yield "Cannot input zeroes."
- return
- gradient_accumulation_steps = batch_size // micro_batch_size
- CURRENT_GRADIENT_ACCUM = gradient_accumulation_steps
- shared.tokenizer.pad_token = 0
- shared.tokenizer.padding_side = "left"
- def tokenize(prompt):
- result = shared.tokenizer(prompt, truncation=True, max_length=cutoff_len + 1, padding="max_length")
- return {
- "input_ids": result["input_ids"][:-1],
- "attention_mask": result["attention_mask"][:-1],
- }
- # == Prep the dataset, format, etc ==
- if raw_text_file not in ['None', '']:
- print("Loading raw text file dataset...")
- with open(clean_path('training/datasets', f'{raw_text_file}.txt'), 'r') as file:
- raw_text = file.read()
- tokens = shared.tokenizer.encode(raw_text)
- del raw_text # Note: could be a gig for a large dataset, so delete redundant data as we go to be safe on RAM
- tokens = list(split_chunks(tokens, cutoff_len - overlap_len))
- for i in range(1, len(tokens)):
- tokens[i] = tokens[i - 1][-overlap_len:] + tokens[i]
- text_chunks = [shared.tokenizer.decode(x) for x in tokens]
- del tokens
- data = Dataset.from_list([tokenize(x) for x in text_chunks])
- train_data = data.shuffle()
- eval_data = None
- del text_chunks
- else:
- if dataset in ['None', '']:
- yield "**Missing dataset choice input, cannot continue.**"
- return
- if format in ['None', '']:
- yield "**Missing format choice input, cannot continue.**"
- return
- with open(clean_path('training/formats', f'{format}.json'), 'r') as formatFile:
- format_data: dict[str, str] = json.load(formatFile)
- def generate_prompt(data_point: dict[str, str]):
- for options, data in format_data.items():
- if set(options.split(',')) == set(x[0] for x in data_point.items() if len(x[1].strip()) > 0):
- for key, val in data_point.items():
- data = data.replace(f'%{key}%', val)
- return data
- raise RuntimeError(f'Data-point "{data_point}" has no keyset match within format "{list(format_data.keys())}"')
- def generate_and_tokenize_prompt(data_point):
- prompt = generate_prompt(data_point)
- return tokenize(prompt)
- print("Loading JSON datasets...")
- data = load_dataset("json", data_files=clean_path('training/datasets', f'{dataset}.json'))
- train_data = data['train'].shuffle().map(generate_and_tokenize_prompt)
- if eval_dataset == 'None':
- eval_data = None
- else:
- eval_data = load_dataset("json", data_files=clean_path('training/datasets', f'{eval_dataset}.json'))
- eval_data = eval_data['train'].shuffle().map(generate_and_tokenize_prompt)
-
- # == Start prepping the model itself ==
- if not hasattr(shared.model, 'lm_head') or hasattr(shared.model.lm_head, 'weight'):
- print("Getting model ready...")
- prepare_model_for_int8_training(shared.model)
-
- print("Prepping for training...")
- config = LoraConfig(
- r=lora_rank,
- lora_alpha=lora_alpha,
- # TODO: Should target_modules be configurable?
- target_modules=[ "q_proj", "v_proj" ],
- lora_dropout=lora_dropout,
- bias="none",
- task_type="CAUSAL_LM"
- )
- try:
- lora_model = get_peft_model(shared.model, config)
- except:
- yield traceback.format_exc()
- return
- trainer = transformers.Trainer(
- model=lora_model,
- train_dataset=train_data,
- eval_dataset=eval_data,
- args=transformers.TrainingArguments(
- per_device_train_batch_size=micro_batch_size,
- gradient_accumulation_steps=gradient_accumulation_steps,
- # TODO: Should more of these be configurable? Probably.
- warmup_steps=100,
- num_train_epochs=epochs,
- learning_rate=actual_lr,
- fp16=True,
- logging_steps=20,
- evaluation_strategy="steps" if eval_data is not None else "no",
- save_strategy="steps",
- eval_steps=200 if eval_data is not None else None,
- save_steps=200,
- output_dir=lora_name,
- save_total_limit=3,
- load_best_model_at_end=True if eval_data is not None else False,
- # TODO: Enable multi-device support
- ddp_find_unused_parameters=None
- ),
- data_collator=transformers.DataCollatorForLanguageModeling(shared.tokenizer, mlm=False),
- callbacks=list([Callbacks()])
- )
- lora_model.config.use_cache = False
- old_state_dict = lora_model.state_dict
- lora_model.state_dict = (
- lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
- ).__get__(lora_model, type(lora_model))
- if torch.__version__ >= "2" and sys.platform != "win32":
- lora_model = torch.compile(lora_model)
- # == Main run and monitor loop ==
- # TODO: save/load checkpoints to resume from?
- print("Starting training...")
- yield "Starting..."
- def threadedRun():
- trainer.train()
- thread = threading.Thread(target=threadedRun)
- thread.start()
- lastStep = 0
- startTime = time.perf_counter()
- while thread.is_alive():
- time.sleep(0.5)
- if WANT_INTERRUPT:
- yield "Interrupting, please wait... *(Run will stop after the current training step completes.)*"
- elif CURRENT_STEPS != lastStep:
- lastStep = CURRENT_STEPS
- timeElapsed = time.perf_counter() - startTime
- if timeElapsed <= 0:
- timerInfo = ""
- totalTimeEstimate = 999
- else:
- its = CURRENT_STEPS / timeElapsed
- if its > 1:
- timerInfo = f"`{its:.2f}` it/s"
- else:
- timerInfo = f"`{1.0/its:.2f}` s/it"
- totalTimeEstimate = (1.0/its) * (MAX_STEPS)
- yield f"Running... **{CURRENT_STEPS}** / **{MAX_STEPS}** ... {timerInfo}, `{timeElapsed:.0f}`/`{totalTimeEstimate:.0f}` seconds"
- print("Training complete, saving...")
- lora_model.save_pretrained(lora_name)
- if WANT_INTERRUPT:
- print("Training interrupted.")
- yield f"Interrupted. Incomplete LoRA saved to `{lora_name}`"
- else:
- print("Training complete!")
- yield f"Done! LoRA saved to `{lora_name}`"
- def split_chunks(arr, step):
- for i in range(0, len(arr), step):
- yield arr[i:i + step]
|