| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051 |
- import sys
- from pathlib import Path
- import accelerate
- import torch
- import modules.shared as shared
- sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa")))
- # 4-bit LLaMA
- def load_quantized(model_name, model_type):
- if model_type == 'llama':
- from llama import load_quant
- elif model_type == 'opt':
- from opt import load_quant
- else:
- print("Unknown pre-quantized model type specified. Only 'llama' and 'opt' are supported")
- exit()
- path_to_model = Path(f'models/{model_name}')
- pt_model = f'{model_name}-{shared.args.gptq_bits}bit.pt'
- # Try to find the .pt both in models/ and in the subfolder
- pt_path = None
- for path in [Path(p) for p in [f"models/{pt_model}", f"{path_to_model}/{pt_model}"]]:
- if path.exists():
- pt_path = path
- if not pt_path:
- print(f"Could not find {pt_model}, exiting...")
- exit()
- model = load_quant(path_to_model, str(pt_path), shared.args.gptq_bits)
- # Multiple GPUs or GPU+CPU
- if shared.args.gpu_memory:
- max_memory = {}
- for i in range(len(shared.args.gpu_memory)):
- max_memory[i] = f"{shared.args.gpu_memory[i]}GiB"
- max_memory['cpu'] = f"{shared.args.cpu_memory or '99'}GiB"
- device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LLaMADecoderLayer"])
- model = accelerate.dispatch_model(model, device_map=device_map)
- # Single GPU
- else:
- model = model.to(torch.device('cuda:0'))
- return model
|