models.py 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. import json
  2. import os
  3. import time
  4. import zipfile
  5. from pathlib import Path
  6. import numpy as np
  7. import torch
  8. import transformers
  9. from transformers import AutoModelForCausalLM, AutoTokenizer
  10. import modules.shared as shared
  11. transformers.logging.set_verbosity_error()
  12. local_rank = None
  13. if shared.args.flexgen:
  14. from flexgen.flex_opt import (CompressionConfig, Env, OptLM, Policy,
  15. TorchDevice, TorchDisk, TorchMixedDevice,
  16. get_opt_config)
  17. if shared.args.deepspeed:
  18. import deepspeed
  19. from transformers.deepspeed import (HfDeepSpeedConfig,
  20. is_deepspeed_zero3_enabled)
  21. from modules.deepspeed_parameters import generate_ds_config
  22. # Distributed setup
  23. local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
  24. world_size = int(os.getenv("WORLD_SIZE", "1"))
  25. torch.cuda.set_device(local_rank)
  26. deepspeed.init_distributed()
  27. ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
  28. dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
  29. def load_model(model_name):
  30. print(f"Loading {model_name}...")
  31. t0 = time.time()
  32. # Default settings
  33. if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen):
  34. if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
  35. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
  36. else:
  37. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16).cuda()
  38. # FlexGen
  39. elif shared.args.flexgen:
  40. gpu = TorchDevice("cuda:0")
  41. cpu = TorchDevice("cpu")
  42. disk = TorchDisk(shared.args.disk_cache_dir)
  43. env = Env(gpu=gpu, cpu=cpu, disk=disk, mixed=TorchMixedDevice([gpu, cpu, disk]))
  44. # Offloading policy
  45. policy = Policy(1, 1,
  46. shared.args.percent[0], shared.args.percent[1],
  47. shared.args.percent[2], shared.args.percent[3],
  48. shared.args.percent[4], shared.args.percent[5],
  49. overlap=True, sep_layer=True, pin_weight=True,
  50. cpu_cache_compute=False, attn_sparsity=1.0,
  51. compress_weight=shared.args.compress_weight,
  52. comp_weight_config=CompressionConfig(
  53. num_bits=4, group_size=64,
  54. group_dim=0, symmetric=False),
  55. compress_cache=False,
  56. comp_cache_config=CompressionConfig(
  57. num_bits=4, group_size=64,
  58. group_dim=2, symmetric=False))
  59. opt_config = get_opt_config(f"facebook/{shared.model_name}")
  60. model = OptLM(opt_config, env, "models", policy)
  61. model.init_all_weights()
  62. # DeepSpeed ZeRO-3
  63. elif shared.args.deepspeed:
  64. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
  65. model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
  66. model.module.eval() # Inference
  67. print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
  68. # Custom
  69. else:
  70. command = "AutoModelForCausalLM.from_pretrained"
  71. params = ["low_cpu_mem_usage=True"]
  72. if not shared.args.cpu and not torch.cuda.is_available():
  73. print("Warning: no GPU has been detected.\nFalling back to CPU mode.\n")
  74. shared.args.cpu = True
  75. if shared.args.cpu:
  76. params.append("low_cpu_mem_usage=True")
  77. params.append("torch_dtype=torch.float32")
  78. else:
  79. params.append("device_map='auto'")
  80. params.append("load_in_8bit=True" if shared.args.load_in_8bit else "torch_dtype=torch.bfloat16" if shared.args.bf16 else "torch_dtype=torch.float16")
  81. if shared.args.gpu_memory:
  82. memory_map = shared.args.gpu_memory
  83. max_memory = f"max_memory={{0: '{memory_map[0]}GiB'"
  84. for i in range(1, len(memory_map)):
  85. max_memory += (f", {i}: '{memory_map[i]}GiB'")
  86. max_memory += (f", 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
  87. params.append(max_memory)
  88. elif not shared.args.load_in_8bit:
  89. total_mem = (torch.cuda.get_device_properties(0).total_memory/(1024*1024))
  90. suggestion = round((total_mem-1000)/1000)*1000
  91. if total_mem-suggestion < 800:
  92. suggestion -= 1000
  93. suggestion = int(round(suggestion/1000))
  94. print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
  95. params.append(f"max_memory={{0: '{suggestion}GiB', 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
  96. if shared.args.disk:
  97. params.append(f"offload_folder='{shared.args.disk_cache_dir}'")
  98. command = f"{command}(Path(f'models/{shared.model_name}'), {', '.join(set(params))})"
  99. model = eval(command)
  100. # Loading the tokenizer
  101. if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path("models/gpt-j-6B/").exists():
  102. tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
  103. else:
  104. tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{shared.model_name}/"))
  105. tokenizer.truncation_side = 'left'
  106. print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
  107. return model, tokenizer
  108. def load_soft_prompt(name):
  109. if name == 'None':
  110. shared.soft_prompt = False
  111. shared.soft_prompt_tensor = None
  112. else:
  113. with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
  114. zf.extract('tensor.npy')
  115. zf.extract('meta.json')
  116. j = json.loads(open('meta.json', 'r').read())
  117. print(f"\nLoading the softprompt \"{name}\".")
  118. for field in j:
  119. if field != 'name':
  120. if type(j[field]) is list:
  121. print(f"{field}: {', '.join(j[field])}")
  122. else:
  123. print(f"{field}: {j[field]}")
  124. print()
  125. tensor = np.load('tensor.npy')
  126. Path('tensor.npy').unlink()
  127. Path('meta.json').unlink()
  128. tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
  129. tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
  130. shared.soft_prompt = True
  131. shared.soft_prompt_tensor = tensor
  132. return name