models.py 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197
  1. import json
  2. import os
  3. import time
  4. import zipfile
  5. from pathlib import Path
  6. import numpy as np
  7. import torch
  8. import transformers
  9. from accelerate import infer_auto_device_map, init_empty_weights
  10. from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
  11. BitsAndBytesConfig)
  12. import modules.shared as shared
  13. transformers.logging.set_verbosity_error()
  14. local_rank = None
  15. if shared.args.flexgen:
  16. from flexgen.flex_opt import CompressionConfig, ExecutionEnv, OptLM, Policy
  17. if shared.args.deepspeed:
  18. import deepspeed
  19. from transformers.deepspeed import (HfDeepSpeedConfig,
  20. is_deepspeed_zero3_enabled)
  21. from modules.deepspeed_parameters import generate_ds_config
  22. # Distributed setup
  23. local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
  24. world_size = int(os.getenv("WORLD_SIZE", "1"))
  25. torch.cuda.set_device(local_rank)
  26. deepspeed.init_distributed()
  27. ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
  28. dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
  29. def load_model(model_name):
  30. print(f"Loading {model_name}...")
  31. t0 = time.time()
  32. shared.is_RWKV = model_name.lower().startswith('rwkv-')
  33. # Default settings
  34. if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.gptq_bits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
  35. if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
  36. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
  37. if torch.has_mps:
  38. model = AutoModelForCausalLM.from_pretrained(
  39. Path(f"models/{shared.model_name}"),low_cpu_mem_usage=True,
  40. torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16
  41. )
  42. device = torch.device('mps')
  43. model = model.to(device)
  44. else:
  45. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16).cuda()
  46. # FlexGen
  47. elif shared.args.flexgen:
  48. # Initialize environment
  49. env = ExecutionEnv.create(shared.args.disk_cache_dir)
  50. # Offloading policy
  51. policy = Policy(1, 1,
  52. shared.args.percent[0], shared.args.percent[1],
  53. shared.args.percent[2], shared.args.percent[3],
  54. shared.args.percent[4], shared.args.percent[5],
  55. overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight,
  56. cpu_cache_compute=False, attn_sparsity=1.0,
  57. compress_weight=shared.args.compress_weight,
  58. comp_weight_config=CompressionConfig(
  59. num_bits=4, group_size=64,
  60. group_dim=0, symmetric=False),
  61. compress_cache=False,
  62. comp_cache_config=CompressionConfig(
  63. num_bits=4, group_size=64,
  64. group_dim=2, symmetric=False))
  65. model = OptLM(f"facebook/{shared.model_name}", env, "models", policy)
  66. # DeepSpeed ZeRO-3
  67. elif shared.args.deepspeed:
  68. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
  69. model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
  70. model.module.eval() # Inference
  71. print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
  72. # RMKV model (not on HuggingFace)
  73. elif shared.is_RWKV:
  74. from modules.RWKV import RWKVModel, RWKVTokenizer
  75. model = RWKVModel.from_pretrained(Path(f'models/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
  76. tokenizer = RWKVTokenizer.from_pretrained(Path('models'))
  77. return model, tokenizer
  78. # Quantized model
  79. elif shared.args.gptq_bits > 0:
  80. from modules.GPTQ_loader import load_quantized
  81. model = load_quantized(model_name)
  82. # Custom
  83. else:
  84. params = {"low_cpu_mem_usage": True}
  85. if not shared.args.cpu and not torch.cuda.is_available() and not torch.has_mps:
  86. print("Warning: torch.cuda.is_available() returned False.\nThis means that no GPU has been detected.\nFalling back to CPU mode.\n")
  87. shared.args.cpu = True
  88. if shared.args.cpu:
  89. params["torch_dtype"] = torch.float32
  90. else:
  91. params["device_map"] = 'auto'
  92. if shared.args.load_in_8bit and any((shared.args.auto_devices, shared.args.gpu_memory)):
  93. params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True)
  94. elif shared.args.load_in_8bit:
  95. params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True)
  96. elif shared.args.bf16:
  97. params["torch_dtype"] = torch.bfloat16
  98. else:
  99. params["torch_dtype"] = torch.float16
  100. if shared.args.gpu_memory:
  101. memory_map = shared.args.gpu_memory
  102. max_memory = {}
  103. for i in range(len(memory_map)):
  104. max_memory[i] = f'{memory_map[i]}GiB'
  105. max_memory['cpu'] = f'{shared.args.cpu_memory or 99}GiB'
  106. params['max_memory'] = max_memory
  107. elif shared.args.auto_devices:
  108. total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024*1024))
  109. suggestion = round((total_mem-1000) / 1000) * 1000
  110. if total_mem - suggestion < 800:
  111. suggestion -= 1000
  112. suggestion = int(round(suggestion/1000))
  113. print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
  114. max_memory = {0: f'{suggestion}GiB', 'cpu': f'{shared.args.cpu_memory or 99}GiB'}
  115. params['max_memory'] = max_memory
  116. if shared.args.disk:
  117. params["offload_folder"] = shared.args.disk_cache_dir
  118. checkpoint = Path(f'models/{shared.model_name}')
  119. if shared.args.load_in_8bit and params.get('max_memory', None) is not None and params['device_map'] == 'auto':
  120. config = AutoConfig.from_pretrained(checkpoint)
  121. with init_empty_weights():
  122. model = AutoModelForCausalLM.from_config(config)
  123. model.tie_weights()
  124. params['device_map'] = infer_auto_device_map(
  125. model,
  126. dtype=torch.int8,
  127. max_memory=params['max_memory'],
  128. no_split_module_classes = model._no_split_modules
  129. )
  130. model = AutoModelForCausalLM.from_pretrained(checkpoint, **params)
  131. # Loading the tokenizer
  132. if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path("models/gpt-j-6B/").exists():
  133. tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
  134. else:
  135. tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{shared.model_name}/"))
  136. tokenizer.truncation_side = 'left'
  137. print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
  138. return model, tokenizer
  139. def load_soft_prompt(name):
  140. if name == 'None':
  141. shared.soft_prompt = False
  142. shared.soft_prompt_tensor = None
  143. else:
  144. with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
  145. zf.extract('tensor.npy')
  146. zf.extract('meta.json')
  147. j = json.loads(open('meta.json', 'r').read())
  148. print(f"\nLoading the softprompt \"{name}\".")
  149. for field in j:
  150. if field != 'name':
  151. if type(j[field]) is list:
  152. print(f"{field}: {', '.join(j[field])}")
  153. else:
  154. print(f"{field}: {j[field]}")
  155. print()
  156. tensor = np.load('tensor.npy')
  157. Path('tensor.npy').unlink()
  158. Path('meta.json').unlink()
  159. tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
  160. tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
  161. shared.soft_prompt = True
  162. shared.soft_prompt_tensor = tensor
  163. return name