text_generation.py 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200
  1. import gc
  2. import re
  3. import time
  4. import numpy as np
  5. import torch
  6. import transformers
  7. from rwkv.utils import PIPELINE, PIPELINE_ARGS
  8. from tqdm import tqdm
  9. import modules.shared as shared
  10. from modules.extensions import apply_extensions
  11. from modules.html_generator import generate_4chan_html, generate_basic_html
  12. from modules.models import local_rank
  13. from modules.stopping_criteria import _SentinelTokenStoppingCriteria
  14. def get_max_prompt_length(tokens):
  15. max_length = 2048-tokens
  16. if shared.soft_prompt:
  17. max_length -= shared.soft_prompt_tensor.shape[1]
  18. return max_length
  19. def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
  20. if shared.is_RWKV:
  21. return prompt
  22. input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
  23. if shared.args.cpu:
  24. return input_ids
  25. elif shared.args.flexgen:
  26. return input_ids.numpy()
  27. elif shared.args.deepspeed:
  28. return input_ids.to(device=local_rank)
  29. else:
  30. return input_ids.cuda()
  31. def decode(output_ids):
  32. reply = shared.tokenizer.decode(output_ids, skip_special_tokens=True)
  33. reply = reply.replace(r'<|endoftext|>', '')
  34. return reply
  35. def generate_softprompt_input_tensors(input_ids):
  36. inputs_embeds = shared.model.transformer.wte(input_ids)
  37. inputs_embeds = torch.cat((shared.soft_prompt_tensor, inputs_embeds), dim=1)
  38. filler_input_ids = torch.zeros((1, inputs_embeds.shape[1]), dtype=input_ids.dtype).to(shared.model.device)
  39. #filler_input_ids += shared.model.config.bos_token_id # setting dummy input_ids to bos tokens
  40. return inputs_embeds, filler_input_ids
  41. # Removes empty replies from gpt4chan outputs
  42. def fix_gpt4chan(s):
  43. for i in range(10):
  44. s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
  45. s = re.sub("--- [0-9]*\n *\n---", "---", s)
  46. s = re.sub("--- [0-9]*\n\n\n---", "---", s)
  47. return s
  48. # Fix the LaTeX equations in galactica
  49. def fix_galactica(s):
  50. s = s.replace(r'\[', r'$')
  51. s = s.replace(r'\]', r'$')
  52. s = s.replace(r'\(', r'$')
  53. s = s.replace(r'\)', r'$')
  54. s = s.replace(r'$$', r'$')
  55. s = re.sub(r'\n', r'\n\n', s)
  56. s = re.sub(r"\n{3,}", "\n\n", s)
  57. return s
  58. def formatted_outputs(reply, model_name):
  59. if not (shared.args.chat or shared.args.cai_chat):
  60. if shared.model_name.lower().startswith('galactica'):
  61. reply = fix_galactica(reply)
  62. return reply, reply, generate_basic_html(reply)
  63. elif shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')):
  64. reply = fix_gpt4chan(reply)
  65. return reply, 'Only applicable for GALACTICA models.', generate_4chan_html(reply)
  66. else:
  67. return reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply)
  68. else:
  69. return reply
  70. def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None):
  71. gc.collect()
  72. if not shared.args.cpu:
  73. torch.cuda.empty_cache()
  74. if shared.is_RWKV:
  75. if shared.args.no_stream:
  76. reply = question + shared.model.generate(question, token_count=max_new_tokens, temperature=temperature)
  77. yield formatted_outputs(reply, None)
  78. return formatted_outputs(reply, None)
  79. else:
  80. for i in range(max_new_tokens//8):
  81. reply = question + shared.model.generate(question, token_count=8, temperature=temperature)
  82. yield formatted_outputs(reply, None)
  83. question = reply
  84. return formatted_outputs(reply, None)
  85. original_question = question
  86. if not (shared.args.chat or shared.args.cai_chat):
  87. question = apply_extensions(question, "input")
  88. if shared.args.verbose:
  89. print(f"\n\n{question}\n--------------------\n")
  90. input_ids = encode(question, max_new_tokens)
  91. cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()"
  92. n = shared.tokenizer.eos_token_id if eos_token is None else encode(eos_token)[0][-1]
  93. if stopping_string is not None:
  94. # The stopping_criteria code below was copied from
  95. # https://github.com/PygmalionAI/gradio-ui/blob/master/src/model.py
  96. t = encode(stopping_string, 0, add_special_tokens=False)
  97. stopping_criteria_list = transformers.StoppingCriteriaList([
  98. _SentinelTokenStoppingCriteria(
  99. sentinel_token_ids=t,
  100. starting_idx=len(input_ids[0])
  101. )
  102. ])
  103. else:
  104. stopping_criteria_list = None
  105. if not shared.args.flexgen:
  106. generate_params = [
  107. f"eos_token_id={n}",
  108. f"stopping_criteria=stopping_criteria_list",
  109. f"do_sample={do_sample}",
  110. f"temperature={temperature}",
  111. f"top_p={top_p}",
  112. f"typical_p={typical_p}",
  113. f"repetition_penalty={repetition_penalty}",
  114. f"top_k={top_k}",
  115. f"min_length={min_length if shared.args.no_stream else 0}",
  116. f"no_repeat_ngram_size={no_repeat_ngram_size}",
  117. f"num_beams={num_beams}",
  118. f"penalty_alpha={penalty_alpha}",
  119. f"length_penalty={length_penalty}",
  120. f"early_stopping={early_stopping}",
  121. ]
  122. else:
  123. generate_params = [
  124. f"do_sample={do_sample}",
  125. f"temperature={temperature}",
  126. f"stop={n}",
  127. ]
  128. if shared.args.deepspeed:
  129. generate_params.append("synced_gpus=True")
  130. if shared.args.no_stream:
  131. generate_params.append("max_new_tokens=max_new_tokens")
  132. else:
  133. generate_params.append("max_new_tokens=8")
  134. if shared.soft_prompt:
  135. inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
  136. generate_params.insert(0, "inputs_embeds=inputs_embeds")
  137. generate_params.insert(0, "filler_input_ids")
  138. else:
  139. generate_params.insert(0, "input_ids")
  140. # Generate the entire reply at once
  141. if shared.args.no_stream:
  142. t0 = time.time()
  143. with torch.no_grad():
  144. output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
  145. if shared.soft_prompt:
  146. output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
  147. reply = decode(output)
  148. if not (shared.args.chat or shared.args.cai_chat):
  149. reply = original_question + apply_extensions(reply[len(question):], "output")
  150. yield formatted_outputs(reply, shared.model_name)
  151. t1 = time.time()
  152. print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0)/8:.2f} it/s, {len(output)-len(input_ids[0])} tokens)")
  153. # Generate the reply 8 tokens at a time
  154. else:
  155. yield formatted_outputs(original_question, shared.model_name)
  156. for i in tqdm(range(max_new_tokens//8+1)):
  157. with torch.no_grad():
  158. output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
  159. if shared.soft_prompt:
  160. output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
  161. reply = decode(output)
  162. if not (shared.args.chat or shared.args.cai_chat):
  163. reply = original_question + apply_extensions(reply[len(question):], "output")
  164. yield formatted_outputs(reply, shared.model_name)
  165. if not shared.args.flexgen:
  166. if output[-1] == n:
  167. break
  168. input_ids = torch.reshape(output, (1, output.shape[0]))
  169. else:
  170. if np.count_nonzero(input_ids[0] == n) < np.count_nonzero(output == n):
  171. break
  172. input_ids = np.reshape(output, (1, output.shape[0]))
  173. if shared.soft_prompt:
  174. inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)