models.py 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168
  1. import json
  2. import os
  3. import time
  4. import zipfile
  5. from pathlib import Path
  6. import numpy as np
  7. import torch
  8. import transformers
  9. from transformers import AutoModelForCausalLM, AutoTokenizer
  10. import modules.shared as shared
  11. transformers.logging.set_verbosity_error()
  12. local_rank = None
  13. if shared.args.flexgen:
  14. from flexgen.flex_opt import (CompressionConfig, ExecutionEnv, OptLM,
  15. Policy, str2bool)
  16. if shared.args.deepspeed:
  17. import deepspeed
  18. from transformers.deepspeed import (HfDeepSpeedConfig,
  19. is_deepspeed_zero3_enabled)
  20. from modules.deepspeed_parameters import generate_ds_config
  21. # Distributed setup
  22. local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
  23. world_size = int(os.getenv("WORLD_SIZE", "1"))
  24. torch.cuda.set_device(local_rank)
  25. deepspeed.init_distributed()
  26. ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
  27. dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
  28. def load_model(model_name):
  29. print(f"Loading {model_name}...")
  30. t0 = time.time()
  31. shared.is_RWKV = model_name.lower().startswith('rwkv-')
  32. # Default settings
  33. if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.gptq_bits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
  34. if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
  35. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
  36. else:
  37. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16).cuda()
  38. # FlexGen
  39. elif shared.args.flexgen:
  40. # Initialize environment
  41. env = ExecutionEnv.create(shared.args.disk_cache_dir)
  42. # Offloading policy
  43. policy = Policy(1, 1,
  44. shared.args.percent[0], shared.args.percent[1],
  45. shared.args.percent[2], shared.args.percent[3],
  46. shared.args.percent[4], shared.args.percent[5],
  47. overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight,
  48. cpu_cache_compute=False, attn_sparsity=1.0,
  49. compress_weight=shared.args.compress_weight,
  50. comp_weight_config=CompressionConfig(
  51. num_bits=4, group_size=64,
  52. group_dim=0, symmetric=False),
  53. compress_cache=False,
  54. comp_cache_config=CompressionConfig(
  55. num_bits=4, group_size=64,
  56. group_dim=2, symmetric=False))
  57. model = OptLM(f"facebook/{shared.model_name}", env, "models", policy)
  58. # DeepSpeed ZeRO-3
  59. elif shared.args.deepspeed:
  60. model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
  61. model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
  62. model.module.eval() # Inference
  63. print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
  64. # RMKV model (not on HuggingFace)
  65. elif shared.is_RWKV:
  66. from modules.RWKV import RWKVModel, RWKVTokenizer
  67. model = RWKVModel.from_pretrained(Path(f'models/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
  68. tokenizer = RWKVTokenizer.from_pretrained(Path('models'))
  69. return model, tokenizer
  70. # Quantized model
  71. elif shared.args.gptq_bits > 0:
  72. from modules.GPTQ_loader import load_quantized
  73. model = load_quantized(model_name)
  74. # Custom
  75. else:
  76. command = "AutoModelForCausalLM.from_pretrained"
  77. params = ["low_cpu_mem_usage=True"]
  78. if not shared.args.cpu and not torch.cuda.is_available():
  79. print("Warning: no GPU has been detected.\nFalling back to CPU mode.\n")
  80. shared.args.cpu = True
  81. if shared.args.cpu:
  82. params.append("low_cpu_mem_usage=True")
  83. params.append("torch_dtype=torch.float32")
  84. else:
  85. params.append("device_map='auto'")
  86. params.append("load_in_8bit=True" if shared.args.load_in_8bit else "torch_dtype=torch.bfloat16" if shared.args.bf16 else "torch_dtype=torch.float16")
  87. if shared.args.gpu_memory:
  88. memory_map = shared.args.gpu_memory
  89. max_memory = f"max_memory={{0: '{memory_map[0]}GiB'"
  90. for i in range(1, len(memory_map)):
  91. max_memory += (f", {i}: '{memory_map[i]}GiB'")
  92. max_memory += (f", 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
  93. params.append(max_memory)
  94. elif not shared.args.load_in_8bit:
  95. total_mem = (torch.cuda.get_device_properties(0).total_memory/(1024*1024))
  96. suggestion = round((total_mem-1000)/1000)*1000
  97. if total_mem-suggestion < 800:
  98. suggestion -= 1000
  99. suggestion = int(round(suggestion/1000))
  100. print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
  101. params.append(f"max_memory={{0: '{suggestion}GiB', 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
  102. if shared.args.disk:
  103. params.append(f"offload_folder='{shared.args.disk_cache_dir}'")
  104. command = f"{command}(Path(f'models/{shared.model_name}'), {', '.join(set(params))})"
  105. model = eval(command)
  106. # Loading the tokenizer
  107. if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path("models/gpt-j-6B/").exists():
  108. tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
  109. else:
  110. tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{shared.model_name}/"))
  111. tokenizer.truncation_side = 'left'
  112. print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
  113. return model, tokenizer
  114. def load_soft_prompt(name):
  115. if name == 'None':
  116. shared.soft_prompt = False
  117. shared.soft_prompt_tensor = None
  118. else:
  119. with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
  120. zf.extract('tensor.npy')
  121. zf.extract('meta.json')
  122. j = json.loads(open('meta.json', 'r').read())
  123. print(f"\nLoading the softprompt \"{name}\".")
  124. for field in j:
  125. if field != 'name':
  126. if type(j[field]) is list:
  127. print(f"{field}: {', '.join(j[field])}")
  128. else:
  129. print(f"{field}: {j[field]}")
  130. print()
  131. tensor = np.load('tensor.npy')
  132. Path('tensor.npy').unlink()
  133. Path('meta.json').unlink()
  134. tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
  135. tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
  136. shared.soft_prompt = True
  137. shared.soft_prompt_tensor = tensor
  138. return name