| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537 |
- import re
- import gc
- import time
- import glob
- import torch
- import argparse
- import json
- from sys import exit
- from pathlib import Path
- import gradio as gr
- import warnings
- from tqdm import tqdm
- import transformers
- from transformers import AutoTokenizer, AutoModelForCausalLM
- from modules.html_generator import *
- from modules.ui import *
- transformers.logging.set_verbosity_error()
- parser = argparse.ArgumentParser()
- parser.add_argument('--model', type=str, help='Name of the model to load by default.')
- parser.add_argument('--notebook', action='store_true', help='Launch the web UI in notebook mode, where the output is written to the same text box as the input.')
- parser.add_argument('--chat', action='store_true', help='Launch the web UI in chat mode.')
- parser.add_argument('--cai-chat', action='store_true', help='Launch the web UI in chat mode with a style similar to Character.AI\'s. If the file profile.png or profile.jpg exists in the same folder as server.py, this image will be used as the bot\'s profile picture.')
- parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
- parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.')
- parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
- parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')
- parser.add_argument('--disk-cache-dir', type=str, help='Directory to save the disk cache to. Defaults to "cache/".')
- parser.add_argument('--gpu-memory', type=int, help='Maximum GPU memory in GiB to allocate. This is useful if you get out of memory errors while trying to generate text. Must be an integer number.')
- parser.add_argument('--cpu-memory', type=int, help='Maximum CPU memory in GiB to allocate for offloaded weights. Must be an integer number. Defaults to 99.')
- parser.add_argument('--no-stream', action='store_true', help='Don\'t stream the text output in real time. This slightly improves the text generation performance.')
- parser.add_argument('--settings', type=str, help='Load the default interface settings from this json file. See settings-template.json for an example.')
- parser.add_argument('--listen', action='store_true', help='Make the web UI reachable from your local network.')
- parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
- args = parser.parse_args()
- loaded_preset = None
- def get_available_models():
- return sorted(set([item.replace('.pt', '') for item in map(lambda x : str(x.name), list(Path('models/').glob('*'))+list(Path('torch-dumps/').glob('*'))) if not item.endswith('.txt')]), key=str.lower)
- def get_available_presets():
- return sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('presets').glob('*.txt'))), key=str.lower)
- def get_available_characters():
- return ["None"] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('characters').glob('*.json'))), key=str.lower)
- available_models = get_available_models()
- available_presets = get_available_presets()
- available_characters = get_available_characters()
- settings = {
- 'max_new_tokens': 200,
- 'max_new_tokens_min': 1,
- 'max_new_tokens_max': 2000,
- 'preset': 'NovelAI-Sphinx Moth',
- 'name1': 'Person 1',
- 'name2': 'Person 2',
- 'context': 'This is a conversation between two people.',
- 'prompt': 'Common sense questions and answers\n\nQuestion: \nFactual answer:',
- 'prompt_gpt4chan': '-----\n--- 865467536\nInput text\n--- 865467537\n',
- 'stop_at_newline': True,
- 'history_size': 8,
- 'history_size_min': 0,
- 'history_size_max': 64,
- 'preset_pygmalion': 'Pygmalion',
- 'name1_pygmalion': 'You',
- 'name2_pygmalion': 'Kawaii',
- 'context_pygmalion': 'This is a conversation between two people.\n<START>',
- 'stop_at_newline_pygmalion': False,
- }
- if args.settings is not None and Path(args.settings).exists():
- with open(Path(args.settings), 'r') as f:
- new_settings = json.load(f)
- for item in new_settings:
- if item in settings:
- settings[item] = new_settings[item]
- def load_model(model_name):
- print(f"Loading {model_name}...")
- t0 = time.time()
- # Default settings
- if not (args.cpu or args.load_in_8bit or args.auto_devices or args.disk or args.gpu_memory is not None):
- if Path(f"torch-dumps/{model_name}.pt").exists():
- print("Loading in .pt format...")
- model = torch.load(Path(f"torch-dumps/{model_name}.pt"))
- elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')) and any(size in model_name.lower() for size in ('13b', '20b', '30b')):
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True)
- else:
- model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
- # Custom
- else:
- settings = ["low_cpu_mem_usage=True"]
- command = "AutoModelForCausalLM.from_pretrained"
- if args.cpu:
- settings.append("torch_dtype=torch.float32")
- else:
- settings.append("device_map='auto'")
- if args.gpu_memory is not None:
- if args.cpu_memory is not None:
- settings.append(f"max_memory={{0: '{args.gpu_memory}GiB', 'cpu': '{args.cpu_memory}GiB'}}")
- else:
- settings.append(f"max_memory={{0: '{args.gpu_memory}GiB', 'cpu': '99GiB'}}")
- if args.disk:
- if args.disk_cache_dir is not None:
- settings.append(f"offload_folder='{args.disk_cache_dir}'")
- else:
- settings.append("offload_folder='cache'")
- if args.load_in_8bit:
- settings.append("load_in_8bit=True")
- else:
- settings.append("torch_dtype=torch.float16")
- settings = ', '.join(set(settings))
- command = f"{command}(Path(f'models/{model_name}'), {settings})"
- model = eval(command)
- # Loading the tokenizer
- if model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path(f"models/gpt-j-6B/").exists():
- tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
- else:
- tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{model_name}/"))
- tokenizer.truncation_side = 'left'
- print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
- return model, tokenizer
- # Removes empty replies from gpt4chan outputs
- def fix_gpt4chan(s):
- for i in range(10):
- s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
- s = re.sub("--- [0-9]*\n *\n---", "---", s)
- s = re.sub("--- [0-9]*\n\n\n---", "---", s)
- return s
- # Fix the LaTeX equations in galactica
- def fix_galactica(s):
- s = s.replace(r'\[', r'$')
- s = s.replace(r'\]', r'$')
- s = s.replace(r'\(', r'$')
- s = s.replace(r'\)', r'$')
- s = s.replace(r'$$', r'$')
- return s
- def encode(prompt, tokens):
- if not args.cpu:
- torch.cuda.empty_cache()
- input_ids = tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=2048-tokens).cuda()
- else:
- input_ids = tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=2048-tokens)
- return input_ids
- def decode(output_ids):
- reply = tokenizer.decode(output_ids, skip_special_tokens=True)
- reply = reply.replace(r'<|endoftext|>', '')
- return reply
- def formatted_outputs(reply, model_name):
- if not (args.chat or args.cai_chat):
- if model_name.lower().startswith('galactica'):
- reply = fix_galactica(reply)
- return reply, reply, generate_basic_html(reply)
- elif model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')):
- reply = fix_gpt4chan(reply)
- return reply, 'Only applicable for GALACTICA models.', generate_4chan_html(reply)
- else:
- return reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply)
- else:
- return reply
- def generate_reply(question, tokens, inference_settings, selected_model, eos_token=None):
- global model, tokenizer, model_name, loaded_preset, preset
- if selected_model != model_name:
- model_name = selected_model
- model = tokenizer = None
- if not args.cpu:
- gc.collect()
- torch.cuda.empty_cache()
- model, tokenizer = load_model(model_name)
- if inference_settings != loaded_preset:
- with open(Path(f'presets/{inference_settings}.txt'), 'r') as infile:
- preset = infile.read()
- loaded_preset = inference_settings
- cuda = "" if args.cpu else ".cuda()"
- n = None if eos_token is None else tokenizer.encode(eos_token, return_tensors='pt')[0][-1]
- input_ids = encode(question, tokens)
- # Generate the entire reply at once
- if args.no_stream:
- output = eval(f"model.generate(input_ids, eos_token_id={n}, {preset}){cuda}")
- reply = decode(output[0])
- yield formatted_outputs(reply, model_name)
- # Generate the reply 1 token at a time
- else:
- yield formatted_outputs(question, model_name)
- preset = preset.replace('max_new_tokens=tokens', 'max_new_tokens=1')
- for i in tqdm(range(tokens)):
- output = eval(f"model.generate(input_ids, {preset}){cuda}")
- reply = decode(output[0])
- if eos_token is not None and reply[-1] == eos_token:
- break
- yield formatted_outputs(reply, model_name)
- input_ids = output
- # Choosing the default model
- if args.model is not None:
- model_name = args.model
- else:
- if len(available_models) == 0:
- print("No models are available! Please download at least one.")
- exit(0)
- elif len(available_models) == 1:
- i = 0
- else:
- print("The following models are available:\n")
- for i,model in enumerate(available_models):
- print(f"{i+1}. {model}")
- print(f"\nWhich one do you want to load? 1-{len(available_models)}\n")
- i = int(input())-1
- print()
- model_name = available_models[i]
- model, tokenizer = load_model(model_name)
- # UI settings
- if model_name.lower().startswith('gpt4chan'):
- default_text = settings['prompt_gpt4chan']
- else:
- default_text = settings['prompt']
- description = f"\n\n# Text generation lab\nGenerate text using Large Language Models.\n"
- css = ".my-4 {margin-top: 0} .py-6 {padding-top: 2.5rem} #refresh-button {flex: none; margin: 0; padding: 0; min-width: 50px; border: none; box-shadow: none; border-radius: 0} #download-label, #upload-label {min-height: 0}"
- if args.chat or args.cai_chat:
- history = []
- character = None
- # This gets the new line characters right.
- def clean_chat_message(text):
- text = text.replace('\n', '\n\n')
- text = re.sub(r"\n{3,}", "\n\n", text)
- text = text.strip()
- return text
- def generate_chat_prompt(text, tokens, name1, name2, context, history_size):
- text = clean_chat_message(text)
- rows = [f"{context.strip()}\n"]
- i = len(history)-1
- count = 0
- while i >= 0 and len(encode(''.join(rows), tokens)[0]) < 2048-tokens:
- rows.insert(1, f"{name2}: {history[i][1].strip()}\n")
- count += 1
- if not (history[i][0] == '<|BEGIN-VISIBLE-CHAT|>'):
- rows.insert(1, f"{name1}: {history[i][0].strip()}\n")
- count += 1
- i -= 1
- if history_size != 0 and count >= history_size:
- break
- rows.append(f"{name1}: {text}\n")
- rows.append(f"{name2}:")
- while len(rows) > 3 and len(encode(''.join(rows), tokens)[0]) >= 2048-tokens:
- rows.pop(1)
- rows.pop(1)
- question = ''.join(rows)
- return question
- def remove_example_dialogue_from_history(history):
- _history = copy.deepcopy(history)
- for i in range(len(_history)):
- if '<|BEGIN-VISIBLE-CHAT|>' in _history[i][0]:
- _history[i][0] = _history[i][0].replace('<|BEGIN-VISIBLE-CHAT|>', '')
- _history = _history[i:]
- break
- return _history
- def chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size):
- question = generate_chat_prompt(text, tokens, name1, name2, context, history_size)
- history.append(['', ''])
- eos_token = '\n' if check else None
- for reply in generate_reply(question, tokens, inference_settings, selected_model, eos_token=eos_token):
- next_character_found = False
- previous_idx = [m.start() for m in re.finditer(f"(^|\n){name2}:", question)]
- idx = [m.start() for m in re.finditer(f"(^|\n){name2}:", reply)]
- idx = idx[len(previous_idx)-1]
- reply = reply[idx + len(f"\n{name2}:"):]
- if check:
- reply = reply.split('\n')[0].strip()
- else:
- idx = reply.find(f"\n{name1}:")
- if idx != -1:
- reply = reply[:idx]
- next_character_found = True
- reply = clean_chat_message(reply)
- history[-1] = [text, reply]
- if next_character_found:
- break
- # Prevent the chat log from flashing if something like "\nYo" is generated just
- # before "\nYou:" is completed
- tmp = f"\n{name1}:"
- next_character_substring_found = False
- for j in range(1, len(tmp)):
- if reply[-j:] == tmp[:j]:
- next_character_substring_found = True
- if not next_character_substring_found:
- yield remove_example_dialogue_from_history(history)
- yield remove_example_dialogue_from_history(history)
- def cai_chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size):
- for history in chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size):
- yield generate_chat_html(history, name1, name2, character)
- def remove_last_message(name1, name2):
- history.pop()
- if args.cai_chat:
- return generate_chat_html(history, name1, name2, character)
- else:
- return history
- def clear():
- global history
- history = []
- def clear_html():
- return generate_chat_html([], "", "", character)
- def redraw_html(name1, name2):
- global history
- return generate_chat_html(history, name1, name2, character)
- def save_history():
- if not Path('logs').exists():
- Path('logs').mkdir()
- with open(Path('logs/conversation.json'), 'w') as f:
- f.write(json.dumps({'data': history}))
- return Path('logs/conversation.json')
- def load_history(file):
- global history
- history = json.loads(file.decode('utf-8'))['data']
- def tokenize_example_dialogue(dialogue, name1, name2):
- dialogue = re.sub('<START>', '', dialogue)
- dialogue = re.sub('(\n|^)[Aa]non:', '\\1You:', dialogue)
- idx = [m.start() for m in re.finditer(f"(^|\n)({name1}|{name2}):", dialogue)]
- messages = []
- for i in range(len(idx)-1):
- messages.append(dialogue[idx[i]:idx[i+1]].strip())
- history = []
- entry = ['', '']
- for i in messages:
- if i.startswith(f'{name1}:'):
- entry[0] = i[len(f'{name1}:'):].strip()
- elif i.startswith(f'{name2}:'):
- entry[1] = i[len(f'{name2}:'):].strip()
- if not (len(entry[0]) == 0 and len(entry[1]) == 0):
- history.append(entry)
- entry = ['', '']
- return history
- def load_character(_character, name1, name2):
- global history, character
- context = ""
- history = []
- if _character != 'None':
- character = _character
- with open(Path(f'characters/{_character}.json'), 'r') as f:
- data = json.loads(f.read())
- name2 = data['char_name']
- if 'char_persona' in data and data['char_persona'] != '':
- context += f"{data['char_name']}'s Persona: {data['char_persona']}\n"
- if 'world_scenario' in data and data['world_scenario'] != '':
- context += f"Scenario: {data['world_scenario']}\n"
- context = f"{context.strip()}\n<START>\n"
- if 'example_dialogue' in data and data['example_dialogue'] != '':
- history = tokenize_example_dialogue(data['example_dialogue'], name1, name2)
- if 'char_greeting' in data and len(data['char_greeting'].strip()) > 0:
- history += [['<|BEGIN-VISIBLE-CHAT|>', data['char_greeting']]]
- else:
- history += [['<|BEGIN-VISIBLE-CHAT|>', "Hello there!"]]
- else:
- character = None
- context = settings['context_pygmalion']
- name2 = settings['name2_pygmalion']
- _history = remove_example_dialogue_from_history(history)
- if args.cai_chat:
- return name2, context, generate_chat_html(_history, name1, name2, character)
- else:
- return name2, context, _history
- suffix = '_pygmalion' if 'pygmalion' in model_name.lower() else ''
- with gr.Blocks(css=css+".h-\[40vh\] {height: 66.67vh} .gradio-container {max-width: 800px; margin-left: auto; margin-right: auto}", analytics_enabled=False) as interface:
- if args.cai_chat:
- display1 = gr.HTML(value=generate_chat_html([], "", "", character))
- else:
- display1 = gr.Chatbot()
- textbox = gr.Textbox(lines=2, label='Input')
- btn = gr.Button("Generate")
- with gr.Row():
- btn2 = gr.Button("Clear history")
- stop = gr.Button("Stop")
- btn3 = gr.Button("Remove last message")
- with gr.Row():
- with gr.Column():
- length_slider = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
- with gr.Row():
- model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
- create_refresh_button(model_menu, lambda : None, lambda : {"choices": get_available_models()}, "refresh-button")
- with gr.Column():
- history_size_slider = gr.Slider(minimum=settings['history_size_min'], maximum=settings['history_size_max'], step=1, label='Chat history size (0 for no limit)', value=settings['history_size'])
- with gr.Row():
- preset_menu = gr.Dropdown(choices=available_presets, value=settings[f'preset{suffix}'], label='Settings preset')
- create_refresh_button(preset_menu, lambda : None, lambda : {"choices": get_available_presets()}, "refresh-button")
- name1 = gr.Textbox(value=settings[f'name1{suffix}'], lines=1, label='Your name')
- name2 = gr.Textbox(value=settings[f'name2{suffix}'], lines=1, label='Bot\'s name')
- context = gr.Textbox(value=settings[f'context{suffix}'], lines=2, label='Context')
- with gr.Row():
- character_menu = gr.Dropdown(choices=available_characters, value="None", label='Character')
- create_refresh_button(character_menu, lambda : None, lambda : {"choices": get_available_characters()}, "refresh-button")
- with gr.Row():
- check = gr.Checkbox(value=settings[f'stop_at_newline{suffix}'], label='Stop generating at new line character?')
- with gr.Row():
- with gr.Tab('Upload chat history'):
- upload = gr.File(type='binary')
- with gr.Tab('Download chat history'):
- download = gr.File()
- save_btn = gr.Button(value="Click me")
- input_params = [textbox, length_slider, preset_menu, model_menu, name1, name2, context, check, history_size_slider]
- if args.cai_chat:
- gen_event = btn.click(cai_chatbot_wrapper, input_params, display1, show_progress=args.no_stream, api_name="textgen")
- gen_event2 = textbox.submit(cai_chatbot_wrapper, input_params, display1, show_progress=args.no_stream)
- btn2.click(clear_html, [], display1, show_progress=False)
- else:
- gen_event = btn.click(chatbot_wrapper, input_params, display1, show_progress=args.no_stream, api_name="textgen")
- gen_event2 = textbox.submit(chatbot_wrapper, input_params, display1, show_progress=args.no_stream)
- btn2.click(lambda x: "", display1, display1, show_progress=False)
- btn2.click(clear)
- btn3.click(remove_last_message, [name1, name2], display1, show_progress=False)
- btn.click(lambda x: "", textbox, textbox, show_progress=False)
- textbox.submit(lambda x: "", textbox, textbox, show_progress=False)
- stop.click(None, None, None, cancels=[gen_event, gen_event2])
- save_btn.click(save_history, inputs=[], outputs=[download])
- upload.upload(load_history, [upload], [])
- character_menu.change(load_character, [character_menu, name1, name2], [name2, context, display1])
- if args.cai_chat:
- upload.upload(redraw_html, [name1, name2], [display1])
- else:
- upload.upload(lambda : history, [], [display1])
- elif args.notebook:
- with gr.Blocks(css=css, analytics_enabled=False) as interface:
- gr.Markdown(description)
- with gr.Tab('Raw'):
- textbox = gr.Textbox(value=default_text, lines=23)
- with gr.Tab('Markdown'):
- markdown = gr.Markdown()
- with gr.Tab('HTML'):
- html = gr.HTML()
- btn = gr.Button("Generate")
- stop = gr.Button("Stop")
- length_slider = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
- with gr.Row():
- with gr.Column():
- with gr.Row():
- model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
- create_refresh_button(model_menu, lambda : None, lambda : {"choices": get_available_models()}, "refresh-button")
- with gr.Column():
- with gr.Row():
- preset_menu = gr.Dropdown(choices=available_presets, value=settings['preset'], label='Settings preset')
- create_refresh_button(preset_menu, lambda : None, lambda : {"choices": get_available_presets()}, "refresh-button")
- gen_event = btn.click(generate_reply, [textbox, length_slider, preset_menu, model_menu], [textbox, markdown, html], show_progress=args.no_stream, api_name="textgen")
- gen_event2 = textbox.submit(generate_reply, [textbox, length_slider, preset_menu, model_menu], [textbox, markdown, html], show_progress=args.no_stream)
- stop.click(None, None, None, cancels=[gen_event, gen_event2])
- else:
- with gr.Blocks(css=css, analytics_enabled=False) as interface:
- gr.Markdown(description)
- with gr.Row():
- with gr.Column():
- textbox = gr.Textbox(value=default_text, lines=15, label='Input')
- length_slider = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
- with gr.Row():
- preset_menu = gr.Dropdown(choices=available_presets, value=settings['preset'], label='Settings preset')
- create_refresh_button(preset_menu, lambda : None, lambda : {"choices": get_available_presets()}, "refresh-button")
- with gr.Row():
- model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
- create_refresh_button(model_menu, lambda : None, lambda : {"choices": get_available_models()}, "refresh-button")
- btn = gr.Button("Generate")
- with gr.Row():
- with gr.Column():
- cont = gr.Button("Continue")
- with gr.Column():
- stop = gr.Button("Stop")
- with gr.Column():
- with gr.Tab('Raw'):
- output_textbox = gr.Textbox(lines=15, label='Output')
- with gr.Tab('Markdown'):
- markdown = gr.Markdown()
- with gr.Tab('HTML'):
- html = gr.HTML()
- gen_event = btn.click(generate_reply, [textbox, length_slider, preset_menu, model_menu], [output_textbox, markdown, html], show_progress=args.no_stream, api_name="textgen")
- gen_event2 = textbox.submit(generate_reply, [textbox, length_slider, preset_menu, model_menu], [output_textbox, markdown, html], show_progress=args.no_stream)
- cont_event = cont.click(generate_reply, [output_textbox, length_slider, preset_menu, model_menu], [output_textbox, markdown, html], show_progress=args.no_stream)
- stop.click(None, None, None, cancels=[gen_event, gen_event2, cont_event])
- interface.queue()
- if args.listen:
- interface.launch(share=args.share, server_name="0.0.0.0")
- else:
- interface.launch(share=args.share)
|