text_generation.py 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177
  1. import re
  2. import time
  3. import modules.shared as shared
  4. import numpy as np
  5. import torch
  6. import transformers
  7. from modules.extensions import apply_extensions
  8. from modules.html_generator import generate_4chan_html
  9. from modules.html_generator import generate_basic_html
  10. from modules.models import local_rank
  11. from modules.stopping_criteria import _SentinelTokenStoppingCriteria
  12. from tqdm import tqdm
  13. def get_max_prompt_length(tokens):
  14. max_length = 2048-tokens
  15. if shared.soft_prompt:
  16. max_length -= shared.soft_prompt_tensor.shape[1]
  17. return max_length
  18. def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
  19. input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
  20. if shared.args.cpu or shared.args.flexgen:
  21. return input_ids
  22. elif shared.args.deepspeed:
  23. return input_ids.to(device=local_rank)
  24. else:
  25. return input_ids.cuda()
  26. def decode(output_ids):
  27. reply = shared.tokenizer.decode(output_ids, skip_special_tokens=True)
  28. reply = reply.replace(r'<|endoftext|>', '')
  29. return reply
  30. def generate_softprompt_input_tensors(input_ids):
  31. inputs_embeds = shared.model.transformer.wte(input_ids)
  32. inputs_embeds = torch.cat((shared.soft_prompt_tensor, inputs_embeds), dim=1)
  33. filler_input_ids = torch.zeros((1, inputs_embeds.shape[1]), dtype=input_ids.dtype).to(shared.model.device)
  34. filler_input_ids += shared.model.config.bos_token_id # setting dummy input_ids to bos tokens
  35. return inputs_embeds, filler_input_ids
  36. # Removes empty replies from gpt4chan outputs
  37. def fix_gpt4chan(s):
  38. for i in range(10):
  39. s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
  40. s = re.sub("--- [0-9]*\n *\n---", "---", s)
  41. s = re.sub("--- [0-9]*\n\n\n---", "---", s)
  42. return s
  43. # Fix the LaTeX equations in galactica
  44. def fix_galactica(s):
  45. s = s.replace(r'\[', r'$')
  46. s = s.replace(r'\]', r'$')
  47. s = s.replace(r'\(', r'$')
  48. s = s.replace(r'\)', r'$')
  49. s = s.replace(r'$$', r'$')
  50. s = re.sub(r'\n', r'\n\n', s)
  51. s = re.sub(r"\n{3,}", "\n\n", s)
  52. return s
  53. def formatted_outputs(reply, model_name):
  54. if not (shared.args.chat or shared.args.cai_chat):
  55. if shared.model_name.lower().startswith('galactica'):
  56. reply = fix_galactica(reply)
  57. return reply, reply, generate_basic_html(reply)
  58. elif shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')):
  59. reply = fix_gpt4chan(reply)
  60. return reply, 'Only applicable for GALACTICA models.', generate_4chan_html(reply)
  61. else:
  62. return reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply)
  63. else:
  64. return reply
  65. def generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None):
  66. original_question = question
  67. if not (shared.args.chat or shared.args.cai_chat):
  68. question = apply_extensions(question, "input")
  69. if shared.args.verbose:
  70. print(f"\n\n{question}\n--------------------\n")
  71. input_ids = encode(question, tokens)
  72. cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()"
  73. if not shared.args.flexgen:
  74. n = shared.tokenizer.eos_token_id if eos_token is None else shared.tokenizer.encode(eos_token, return_tensors='pt')[0][-1]
  75. else:
  76. n = shared.tokenizer(eos_token).input_ids[0] if eos_token else None
  77. if stopping_string is not None:
  78. # The stopping_criteria code below was copied from
  79. # https://github.com/PygmalionAI/gradio-ui/blob/master/src/model.py
  80. t = encode(stopping_string, 0, add_special_tokens=False)
  81. stopping_criteria_list = transformers.StoppingCriteriaList([
  82. _SentinelTokenStoppingCriteria(
  83. sentinel_token_ids=t,
  84. starting_idx=len(input_ids[0])
  85. )
  86. ])
  87. else:
  88. stopping_criteria_list = None
  89. if not shared.args.flexgen:
  90. generate_params = [
  91. f"eos_token_id={n}",
  92. f"stopping_criteria=stopping_criteria_list",
  93. f"do_sample={do_sample}",
  94. f"temperature={temperature}",
  95. f"top_p={top_p}",
  96. f"typical_p={typical_p}",
  97. f"repetition_penalty={repetition_penalty}",
  98. f"top_k={top_k}",
  99. f"min_length={min_length if shared.args.no_stream else 0}",
  100. f"no_repeat_ngram_size={no_repeat_ngram_size}",
  101. f"num_beams={num_beams}",
  102. f"penalty_alpha={penalty_alpha}",
  103. f"length_penalty={length_penalty}",
  104. f"early_stopping={early_stopping}",
  105. ]
  106. else:
  107. generate_params = [
  108. f"do_sample={do_sample}",
  109. f"temperature={temperature}",
  110. f"stop={n}",
  111. ]
  112. if shared.args.deepspeed:
  113. generate_params.append("synced_gpus=True")
  114. if shared.args.no_stream:
  115. generate_params.append(f"max_new_tokens=tokens")
  116. else:
  117. generate_params.append(f"max_new_tokens=8")
  118. if shared.soft_prompt:
  119. inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
  120. generate_params.insert(0, "inputs_embeds=inputs_embeds")
  121. generate_params.insert(0, "filler_input_ids")
  122. else:
  123. generate_params.insert(0, "input_ids")
  124. # Generate the entire reply at once
  125. if shared.args.no_stream:
  126. t0 = time.time()
  127. with torch.no_grad():
  128. output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
  129. if shared.soft_prompt:
  130. output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
  131. reply = decode(output)
  132. if not (shared.args.chat or shared.args.cai_chat):
  133. reply = original_question + apply_extensions(reply[len(question):], "output")
  134. yield formatted_outputs(reply, shared.model_name)
  135. t1 = time.time()
  136. print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0)/8:.2f} it/s, {len(output)-len(input_ids[0])} tokens)")
  137. # Generate the reply 8 tokens at a time
  138. else:
  139. yield formatted_outputs(original_question, shared.model_name)
  140. for i in tqdm(range(tokens//8+1)):
  141. with torch.no_grad():
  142. output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
  143. if shared.soft_prompt:
  144. output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
  145. reply = decode(output)
  146. if not (shared.args.chat or shared.args.cai_chat):
  147. reply = original_question + apply_extensions(reply[len(question):], "output")
  148. yield formatted_outputs(reply, shared.model_name)
  149. if not shared.args.flexgen:
  150. input_ids = torch.reshape(output, (1, output.shape[0]))
  151. else:
  152. input_ids = np.reshape(output, (1, output.shape[0]))
  153. if shared.soft_prompt:
  154. inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
  155. if output[-1] == n:
  156. break