| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384 |
- import re
- import sys
- from pathlib import Path
- import accelerate
- import torch
- import modules.shared as shared
- sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa")))
- import llama
- import llama_inference_offload
- import opt
- def load_quantized(model_name):
- if not shared.args.model_type:
- # Try to determine model type from model name
- model_type = model_name.split('-')[0].lower()
- if model_type not in ('llama', 'opt'):
- print("Can't determine model type from model name. Please specify it manually using --gptq-model-type "
- "argument")
- exit()
- else:
- model_type = shared.args.model_type.lower()
- if model_type == 'llama':
- if not shared.args.pre_layer:
- load_quant = llama.load_quant
- else:
- load_quant = llama_inference_offload.load_quant
- elif model_type == 'opt':
- load_quant = opt.load_quant
- else:
- print("Unknown pre-quantized model type specified. Only 'llama' and 'opt' are supported")
- exit()
- path_to_model = Path(f'models/{model_name}')
- if path_to_model.name.lower().startswith('llama-7b'):
- pt_model = f'llama-7b-{shared.args.wbits}bit.pt'
- elif path_to_model.name.lower().startswith('llama-13b'):
- pt_model = f'llama-13b-{shared.args.wbits}bit.pt'
- elif path_to_model.name.lower().startswith('llama-30b'):
- pt_model = f'llama-30b-{shared.args.wbits}bit.pt'
- elif path_to_model.name.lower().startswith('llama-65b'):
- pt_model = f'llama-65b-{shared.args.wbits}bit.pt'
- else:
- pt_model = f'{model_name}-{shared.args.wbits}bit.pt'
- # Try to find the .pt both in models/ and in the subfolder
- pt_path = None
- for path in [Path(p) for p in [f"models/{pt_model}", f"{path_to_model}/{pt_model}"]]:
- if path.exists():
- pt_path = path
- if not pt_path:
- print(f"Could not find {pt_model}, exiting...")
- exit()
- # qwopqwop200's offload
- if shared.args.pre_layer:
- model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.pre_layer)
- else:
- model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits)
- # accelerate offload (doesn't work properly)
- if shared.args.gpu_memory:
- memory_map = list(map(lambda x : x.strip(), shared.args.gpu_memory))
- max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB'
- max_memory = {}
- for i in range(len(memory_map)):
- max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i]
- max_memory['cpu'] = max_cpu_memory
- device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LlamaDecoderLayer"])
- print("Using the following device map for the 4-bit model:", device_map)
- # https://huggingface.co/docs/accelerate/package_reference/big_modeling#accelerate.dispatch_model
- model = accelerate.dispatch_model(model, device_map=device_map, offload_buffers=True)
- # No offload
- elif not shared.args.cpu:
- model = model.to(torch.device('cuda:0'))
- return model
|